检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
先对音频进行播放识别,然后选中音频文件,在右侧“标签”区域,输入“标签名”或从下拉列表中选择已添加的标签,同时可在下拉菜单中选择标签“快捷键”。单击“确定”,完成选中音频的标注操作。
新版镜像修改了默认的HOME目录,由“/home/work”变为“/home/ma-user”,请注意识别训练代码中是否有“/home/work”的硬编码。 提供预置引擎类型有差异。新版的预置引擎在常用的训练引擎上进行了升级。
下面是mnist镜像的访问示例,该镜像内含mnist数据集训练的模型,可以识别手写数字。其中listen_ip为容器IP,您可以通过启动自定义镜像,在容器中获取容器IP。
智能标注后,确认难例 “智能标注”任务执行过程中,ModelArts将自动识别难例,并完成标注。当智能标注结束后,难例标注结果将呈现在“待确认”页签,建议您对难例数据进行人工修正,然后确认标注。
cd /home/ma-user/infer/model/1 ll 图4 查看镜像文件复制成功 模型包文件样例 模型包文件model.zip中需要用户自己准备模型文件,此处仅是举例示意说明,以一个手写数字识别模型为例。
SD1.5基于DevServer适配PyTorch NPU Finetune训练指导(6.3.904) Stable Diffusion(简称SD)是一种基于Latent Diffusion(潜在扩散)模型,应用于文生图场景。对于输入的文字,它将会通过一个文本编码器将其转换为文本嵌入
如果您使用专属资源池创建训练作业,容错检查识别的故障节点会被剔除。系统自动补充健康的计算节点至专属资源池。(该功能即将上线) 容错检查详细介绍请参考: 开启容错检查 检测项目与执行条件 触发容错环境检测达到的效果 环境预检查通过后,如果发生硬件故障会导致用户业务中断。
id String 待创建Notebook实例的镜像,需要指定镜像ID,ID格式为通用唯一识别码(Universally Unique Identifier,简称UUID)。预置镜像的ID参考查询支持的镜像列表获取。
id String 待创建Notebook实例的镜像,需要指定镜像ID,ID格式为通用唯一识别码(Universally Unique Identifier,简称UUID)。预置镜像的ID参考查询支持的镜像列表获取。
针对“物体检测”类型的标注作业,选择“主动学习”时,只支持识别和标注矩形框。 图1 启动智能标注(图像分类) 图2 启动智能标注(物体检测) 图3 启动智能标注(预标注) 完成参数设置后,单击“提交”,即可启动智能标注。
id String 待创建Notebook实例的镜像,需要指定镜像ID,ID格式为通用唯一识别码(Universally Unique Identifier,简称UUID)。预置镜像的ID参考查询支持的镜像列表获取。
单击将连接重命名,可以自定义一个便于识别的名字,单击OK。 配置完成后,单击Test Connection测试连通性。 选择Yes,显示Successfully connected表示网络可以连通,单击OK。 在最下方再单击OK保存配置。
文件类的预测代码和返回结果样例,可参见花卉识别样例。此样例是使用订阅算法训练的元模型,其输入类型为ModelArts官方定义,不可更改,如需自定义的元模型,请参见手写数字识别样例。
id String 待创建Notebook实例的镜像,需要指定镜像ID,ID格式为通用唯一识别码(Universally Unique Identifier,简称UUID)。预置镜像的ID参考查询支持的镜像列表获取。
该字段不需要填,系统也能自动识别出model目录下的推理代码。 否 str dependencies 推理代码及模型需安装的包,默认为空。从配置文件读取。 否 str model_metrics 模型精度信息,从配置文件读取。
难例原因ID可选值如下: 0:未识别出任何目标物体。 1:置信度偏低。 2:基于训练数据集的聚类结果和预测结果不一致。 3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。
难例原因ID可选值如下: 0:未识别出任何目标物体。 1:置信度偏低。 2:基于训练数据集的聚类结果和预测结果不一致。 3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。
在创建的模型部署服务成功后,进行预测时,会自动识别预测类型。 创建模型时不填写apis。在创建的模型部署服务成功后,进行预测,需选择“请求类型”。“请求类型”可选择“application/json”或“multipart/form-data”。请根据元模型,选择合适的类型。
给出MXNet实现手写数字识别项目中部署在线predictor实例: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 from modelarts.session import Session from modelarts.model import
难例原因ID可选值如下: 0:未识别出任何目标物体。 1:置信度偏低。 2:基于训练数据集的聚类结果和预测结果不一致。 3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。