检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
无监督领域知识数据量无法支持增量预训练,如何进行模型学习 一般来说,建议采用增量预训练的方式让模型学习领域知识,但预训练对数据量的要求较大,如果您的无监督文档量级过小,达不到预训练要求,您可以通过一些手段将其转换为有监督数据,再将转换后的领域知识与目标任务数据混合,使用微调的方式让模型学习。 这里提供了一些将无
科学计算大模型训练流程介绍 科学计算大模型的训练主要分为两个阶段:预训练与微调。 预训练阶段:预训练是模型学习基础知识的过程,基于大规模通用数据集进行。例如,在区域海洋要素预测中,可以重新定义深海变量、海表变量,调整深度层、时间分辨率、水平分辨率以及区域范围,以适配自定义区域的模型场景。此阶段需预先准备区域的高精度数据。
大模型(Large Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于自然语言处理(NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据集准备:大模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。首先,需要根据业务需求收集相关的原
关的输出。这是因为模型通过学习大量的训练数据,逐渐建立起对特定模式、结构和语言的理解,因此,提示词中包含的关键词、句式和语境如果与训练数据中的模式接近,模型能够“回忆”并运用已学习的知识和指令。 不同模型间效果差异。 由于不同厂商采用的训练策略和数据集差异,同一提示词在不同模型上
提供相关示例:在提示词中加入类似的示例,帮助模型学习解题的模式和思路。通过这些示例,模型能够理解如何通过不同的推理步骤逐渐得出结论。 例如,在数学问题中,可以通过展示从问题解析到公式应用再到最终解答的完整过程,帮助模型理解问题解决的逻辑。 引导模型分析:如果没有直接的示例或现有示例不适用,可以引导模型首先进行“
这种情况可能是由于以下原因导致的,建议您排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合或过拟合。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,根据实际情况调整训练参数,帮助模型更好学习。 Prompt设置:请检
型参数规模很大,可以使用较小的学习率,反之可以使用较大的学习率。 如果您没有专业的调优经验,可以优先使用平台提供的默认值,再结合训练过程中模型的收敛情况动态调整。 学习率衰减比率(learning_rate_decay_ratio) 0~1 0.01~0.1 学习率衰减比率用于设
取值需≥0。 学习率 学习率决定每次训练中模型参数更新的幅度。 选择合适的学习率至关重要: 如果学习率过大,模型可能无法收敛。 如果学习率过小,模型的收敛速度将变得非常慢。 学习率调整策略 用于选择学习率调度器的类型。学习率调度器可以在训练过程中动态地调整学习率,以改善模型的训
图片类加工算子介绍 数据加工算子为用户提供了多种数据操作能力,包括数据提取、过滤、转换、打标签等。这些算子能够帮助用户从海量数据中提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台提供了图文类、图片类加工算子,算子能力清单见表1。 表1 图片类加工算子能力清单 算子分类 算子名称 算子描述
数据加工算子为用户提供了多种数据操作能力,包括数据提取、过滤、转换、打标签等。这些算子能够帮助用户从海量数据中提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台支持文本类数据集的加工操作,分为数据提取、数据转换、数据过滤、数据打标四类,文本类加工算子能力清单见表1。 表1 文本类加工算子能力清单
训练相关概念说明 概念名 说明 自监督学习 自监督学习(Self-Supervised Learning,简称SSL)是一种机器学习方法,它从未标记的数据中提取监督信号,属于无监督学习的一个子集。该方法通过创建“预设任务”让模型从数据中学习,从而生成有用的表示,可用于后续任务。它
科学计算大模型的学习率调优策略如下: 学习率太小时,损失曲线几乎是一条水平线,下降非常缓慢,此时可以增大学习率,使用学习率预热(Warm-up)的方法,在训练初期逐步增加学习率,避免初始阶段学习率过小。 学习率太大时,损失曲线剧烈震荡,甚至出现梯度爆炸的问题,可以使用学习率衰减(De
数据加工算子为用户提供了多种数据操作能力,包括数据提取、过滤、打标签等。这些算子能够帮助用户从海量数据中提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台支持视频类数据集的加工操作,分为数据提取、数据过滤、数据打标三类,视频类加工算子能力清单见表1。 表1 视频类加工算子能力清单 算子分类
大模型解释推理过程,可以引导大模型生成准确率更高的结果。 单样本/多样本 可以在提示词中提供示例,让模型先学习后回答,在使用这种方法时需要约束新样例不能照抄前面给的参考样例,新样例必须多样化、不能重复等,否则可能会直接嫁接前文样例的内容,也可以约束只是让它学习参考样例的xxx生成思路、xxx风格、xxx生成方法等。
将“核采样”参数调小至0.1,保持其他参数不变,单击“重新生成”,再单击“重新生成”,可以观察到模型前后两次回复内容的多样性降低。 图4 “核采样”参数为0.1的生成结果1 图5 “核采样”参数为0.1的生成结果2 预置模型部署成功后,可以通过“文本对话”API调用NLP大模型,调用步骤如下: 登录ModelArts
NLP大模型的训练分为两个关键阶段:预训练和微调。 预训练阶段:在这一阶段,模型通过学习大规模通用数据集来掌握语言的基本模式和语义。这一过程为模型提供了处理各种语言任务的基础,如阅读理解、文本生成和情感分析,但它还未能针对特定任务进行优化。 针对预训练阶段,还可以继续进行训练,这一过程称为增量预训练。增量预训练是
延长每次训练时间。 学习率衰减比率 用于控制训练过程中学习率下降的幅度。 计算公式为:最低学习率 = 初始学习率 × 学习率衰减比率。 学习率 学习率决定每次训练中模型参数更新的幅度。 选择合适的学习率至关重要: 如果学习率过大,模型可能无法收敛。 如果学习率过小,模型的收敛速度将变得非常慢。
型参数规模很大,可以使用较小的学习率,反之可以使用较大的学习率。 如果您没有专业的调优经验,可以优先使用平台提供的默认值,再结合训练过程中模型的收敛情况动态调整。 学习率衰减比率(learning_rate_decay_ratio) 0~1 0.01~0.1 学习率衰减比率用于设
影响模型训练效果。通过数据加工操作,可以有效去除无效信息、填补缺失数据,确保数据的准确性与一致性,从而提高数据质量,为模型训练提供可靠的输入。 扩展数据集的多样性和泛化能力 在数据量不足或样本不平衡的情况下,数据合成可以生成新数据,扩展数据集的规模和多样性。通过增加数据的多样性,
盘古大模型整合华为云强大的计算和数据资源,将先进的AI算法集成在预训练大模型中,打造出具有深度语义理解与生成能力的人工智能大语言模型。可进行对话互动、回答问题、协助创作。 盘古大模型在ModelArts Studio大模型开发平台部署后,可以通过API调用推理接口。 表1 API清单 API 功能 操作指导