已找到以下 10000 条记录
  • 【转载】深度学习简介

    重点探讨的深度学习是具有多级表示的表征学习方法。在每一级(从原始数据开始),深度学习通过简单的函数将该级的表示变换为更高级的表示。因此,深度学习模型也可以看作是由许多简单函数复合而成的函数。当这些复合的函数足够多时,深度学习模型就可以表达非常复杂的变换。 深度学习可以逐级表示越来

    作者: Tianyi_Li
    发表时间: 2020-12-15 09:58:16
    6090
    0
  • 深度学习计算服务平台

    深度学习计算服务平台是中科弘云面向有定制化AI需求的行业用户,推出的AI开发平台,提供从样本标注、模型训练、模型部署的一站式AI开发能力,帮助用户快速训练和部署模型,管理全周期AI工作流。平台为开发者设计了众多可帮助降低开发成本的开发工具与框架,例如AI数据、AI模型与算力等。

  • 深度学习:主流框架和编程实战》——1.5 深度学习展望

    1.5 深度学习展望随着硬件计算能力的提升以及大规模数据的出现,深度学习已经成为机器学习中一个重要的领域,下面对深度学习的一些模型进行介绍。卷积神经网络(Convolutional Neural Network,CNN)是一类适用于处理图像数据的多层神经网络。CNN从生物学上的

    作者: 华章计算机
    发表时间: 2019-06-04 19:32:31
    6790
    0
  • 深度学习之验证

    超参数的,尽管验证的误差通常会比训练误差小,验证集会低估泛化误差。所有超参数优化完成之后,泛化误差可能会通过测试来估计。在实际中,当相同的测试已在很多年中重复地用于评估不同算法的性能,并且考虑学术界在该测试上的各种尝试,我们最后可能也会对测试有着乐观的估计。基准会因之

    作者: 小强鼓掌
    730
    1
  • 《MXNet深度学习实战》

    战 魏凯峰 著PREFACE前  言为什么要写这本书深度学习领域开始受到越来越多的关注,各大深度学习框架也孕育而生,在这个阶段,我被深度学习深深吸引并逐渐开始学习相关知识。研究生毕业后,我继续从事算法相关的工作,具体而言是深度学习算法在图像领域的应用,也就是常说的计算机视觉算法。M

    作者: 华章计算机
    发表时间: 2019-06-16 16:07:19
    3924
    0
  • 浅谈深度学习

    处理领域,深度学习技术可以自动理解语言的结构和含义。这是因为深度学习模型可以从文本中提取特征,例如词汇、语法结构和语义等。然后,这些特征可以被用于理解文本的含义和结构。在机器人控制领域,深度学习技术可以帮助机器人识别和理解环境,并进行自主决策。这是因为深度学习模型可以从图像和语音

    作者: 运气男孩
    24
    3
  • 使用服务器深度学习算法

    使用服务器深度学习算法 前言 深度学习是人工智能领域中备受瞩目的技术之一,它通过多层神经网络模拟人脑的学习过程,帮助计算机在语音识别、图像分类和自然语言处理等领域取得突破性进展。相比传统机器学习,深度学习的一个重要特点是可以自动提取特征,而不需要人工定义特征,这大幅提升了效率和效果。

    作者: 远方2.0
    发表时间: 2024-11-26 16:06:44
    2
    0
  • 深度学习概念

    深度学习概念 深度学习(Deep Learning, DL)由Hinton等人于2006年提出,是机器学习(MachineLearning, ML)的一个新领域。 深度学习被引入机器学习使其更接近于最初的目标----人工智能(AI,Artificial Intelligence)

    作者: QGS
    973
    3
  • 深度学习前景

    为众所周知的“深度学习’’。这个领域已经更换了很多名称,它反映了不同的研究人员和不同观点的影响。全面地讲述深度学习的历史超出了本书的范围。然而,一些基本的背景对理解深度学习是有用的。一般来说,目前为止深度学习已经经历了三次发展浪潮:20世纪40年代到60年代深度学习的雏形出现在控

    作者: G-washington
    1665
    1
  • 深度学习导论

    开始投入资源进行深度学习的研究和应用。深度学习的用途非常广泛,如下图4.1 物体分类4.1.1 一般物体分类CIFAR和ILSVRC2012等数据是计算机视觉领域中常用的数据,用于训练各种图像分类和识别模型。这些数据具有各自的特点和挑战,被广泛应用于深度学习和计算机视觉算法

    作者: 林欣
    42
    1
  • 深度学习释义

    深度学习是机器学习的一种,而机器学习是实现人工智能的必经路径。深度学习的概念源于人工神经网络的研究,含多个隐藏层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。研究深度学习的动机在于建立模拟人脑进行分析学

    作者: 某地瓜
    1961
    1
  • 浅谈深度学习

    智能相关技术取得了很大进步。深度学习定义深度学习定义:一般是指通过训练多层网络结构对未知数据进行分类或回归深度学习分类:有监督学习方法——深度前馈网络、卷积神经网络、循环神经网络等;无监督学习方法——深度信念网、深度玻尔兹曼机,深度自编码器等。深度学习的思想:深度神经网络的基本思

    作者: QGS
    39
    2
  • 什么是深度学习

    深度学习是支撑人工智能发展的核心技术,云服务则是深度学习的主要业务模式之一。OMAI深度学习平台(以下简称OMAI平台)即是在上述前提下诞生的平台软件。OMAI深度学习平台是具备深度学习算法开发、模型训练、推理服务等能力的一站式平台软件。OMAI平台以支持高性能计算技术和大规模分

    作者: OMAI
    6642
    0
  • 认识深度学习

    什么是深度学习 要理解什么是深度学习,人们首先需要理解它是更广泛的人工智能领域的一部分。简而言之,人工智能涉及教计算机思考人类的思维方式,其中包括各种不同的应用,例如计算机视觉、自然语言处理和机器学习。 机器学习是人工智能的一个子集,它使计算机在没有明确编程的情况下能够更好地完成

    作者: 建赟
    1845
    2
  • 深度学习简介

    信网络。与传统的学习方法相比,深度学习方法预设了更多的模型参数,因此模型训练难度更大,根据统计学习的一般规律知道,模型参数越多,需要参与训练的数据量也越大。 20世纪八九十年代由于计算机计算能力有限和相关技术的限制,可用于分析的数据量太小,深度学习在模式分析中并没有表现出优异的识别性能。自从2006年,

    作者: 某地瓜
    1683
    1
  • 深度学习初体验

    (NLP)领域。显然,“深度学习”是与机器学习中的“神经网络”是强相关,“神经网络”也是其主要的算法和手段;或者可以将“深度学习”称之为“改良版的神经网络”算法。目前主流的深度学习的框架有:TensorFlow、MOA、Caffe、Apache SINGA、PyTorch、Puppet、MXNet、Nervana

    作者: ad123445
    8090
    33
  • 【mindSpore】【深度学习】求指路站内的深度学习教程

    老师给了我们个任务,用mindSpore完成一个深度学习,求大佬指路,站内有什么方便的教程。要求不能是花卉识别、手写体数字识别、猫狗识别,因为这些按教程已经做过了(然而我还是不会mindSpore)。尽量简单,我们只要是个深度学习就能完成任务。

    作者: abcd咸鱼
    1443
    1
  • 深度学习-语义数据

    好的数据必不可少。公开的语义分割数据有很多,目前学术界主要有三个benchmark(数据)用于模型训练和测试。第一个常用的数据是Pascal VOC系列。这个系列中目前较流行的是VOC2012,Pascal Context等类似的数据也有用到。第二个常用的数据是Microsoft

    作者: @Wu
    729
    0
  • 深度学习之“深度”

    经网络这一术语来自于神经生物学,然而,虽然深度学习的一些核心概念是从人们对大脑的理解中汲取部分灵感而形成的,但深度学习模型不是大脑模型。没有证据表明大脑的学习机制与现代深度学习模型所使用的相同。你可能会读到一些流行科学的文章,宣称深度学习的工作原理与大脑相似或者是根据大脑的工作原

    作者: ypr189
    1571
    1
  • 深度学习的现实应用

    步刷新了深度学习方法在自然语言处理任务上的技术前沿。到目前为止,面向自然语言处理任务的深度学习架构仍在不断进化,与强化学习、无监督学习等的结合应该会带来效果更优的模型。 1.3.4 其他领域深度学习在其他领域(如生物学、医疗和金融等)也有很多应用。在生物学研究中,深度学习算法可以

    作者: HWCloudAI
    发表时间: 2020-12-15 15:22:32
    3616
    0