检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
数据集。 准备一个图像分类算法(或者可以直接从AI Gallery搜索订阅一个“图像分类-ResNet_v1_50”算法)。 准备一个图片类型的数据集,请参考准备数据集。可从AI Gallery直接下载(例如:8类常见生活垃圾图片数据集)。 from modelarts import
--output-prefix:处理后的数据集保存路径+数据集名称(例如:moss-003-sft-data)。 --tokenizer-type:tokenizer的类型,可选项有['BertWordPieceLowerCase','BertWordPieceCase','GPT2BPETokenizer'
--output-prefix:处理后的数据集保存路径+数据集名称(例如:moss-003-sft-data)。 --tokenizer-type:tokenizer的类型,可选项有['BertWordPieceLowerCase','BertWordPieceCase','GPT2BPETokenizer'
上传算法至SFS 下载Swin-Transformer代码。 git clone --recursive https://github.com/microsoft/Swin-Transformer.git 修改lr_scheduler.py文件,把第27行:t_mul=1. 注释掉。
ModelArts Standard使用流程 本章节旨在帮助您了解ModelArts Standard的基本使用方法,帮助您快速上手ModelArts服务。 面向熟悉代码编写和调测,熟悉常见AI引擎的开发者,ModelArts不仅提供了在线代码开发环境,还提供了从数据准备、模型训
osmoothquant/utils/utils.py中的build_model_and_tokenizer函数,将torch_dtype类型从torch.float16改成torch.bfloat16 kwargs = {"torch_dtype": torch.bfloat16
osmoothquant/utils/utils.py中的build_model_and_tokenizer函数,将torch_dtype类型从torch.float16改成torch.bfloat16 kwargs = {"torch_dtype": torch.bfloat16
规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 模型参数量 训练类型 序列长度cutoff_len 梯度累积值 优化工具(Deepspeed) 规格与节点数 llama2 7B lora/dpo 4096/8192
osmoothquant/utils/utils.py中的build_model_and_tokenizer函数,将torch_dtype类型从torch.float16改成torch.bfloat16 kwargs = {"torch_dtype": torch.bfloat16
点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值 优化工具(Deepspeed) 规格与节点数 llama2 llama2 7B lora 4096/8192
mmlu_gen 。 model_name:评测模型名称,不需要与启动服务时的模型参数保持一致。 benchmark_type:评测数据集类型,分为eval、static、awq,也就是精度、静态和量化数据集,默认eval。 参考命令: vllm_path=vllm service_port=8080
mmlu_gen 。 model_name:评测模型名称,不需要与启动服务时的模型参数保持一致。 benchmark_type:评测数据集类型,分为eval、static、awq,也就是精度、静态和量化数据集,默认eval。 参考命令: vllm_path=vllm service_port=8080
--datasets:评测的数据集及评测方法,其中 mmlu 是数据集,ppl 是评测方法。 --hf-type:HuggingFace模型权重类型(base,chat),默认为chat,依据实际的模型选择。 --hf-path:本地 HuggingFace 权重的路径,比如/home
--output-prefix:处理后的数据集保存路径+数据集名称(例如:moss-003-sft-data)。 --tokenizer-type:tokenizer的类型,可选项有['BertWordPieceLowerCase','BertWordPieceCase','GPT2BPETokenizer'
--output-prefix:处理后的数据集保存路径+数据集名称(例如:alpaca_gpt4_data)。 --tokenizer-type:tokenizer的类型,可选项有['BertWordPieceLowerCase','BertWordPieceCase','GPT2BPETokenizer'
"/path1", "/path2/path2-1" ], modelarts:sfsOption 设置用户对于SFS Turbo文件夹的权限类型,支持填写以下参数: 仅读权限:readonly 读写权限:readwrite(创建开发环境实例modelarts:notebook:create仅支持配置readwrite)
--output-prefix:处理后的数据集保存路径+数据集名称(例如:alpaca_gpt4_data)。 --tokenizer-type:tokenizer的类型,可选项有['BertWordPieceLowerCase','BertWordPieceCase','GPT2BPETokenizer'
--output-prefix:处理后的数据集保存路径+数据集名称(例如:moss-003-sft-data)。 --tokenizer-type:tokenizer的类型,可选项有['BertWordPieceLowerCase','BertWordPieceCase','GPT2BPETokenizer'
通过分类模型,将数据项映射到某个给定的类别。它可以应用到客户的分类、客户的属性和特征分析、客户满意度分析、客户的购买趋势预测等。 聚类 聚类是把一组数据按照相似性和差异性分为几个类别,其目的是使得属于同一类别的数据间的相似性尽可能大,不同类别中的数据间的相似性尽可能小。它可以应用
第二个计费周期为:2023/04/08 23:59:59 ~ 2023/05/08 23:59:59 您需要为每个计费周期预先付费,计费公式如表2所示。 表2 计费公式 资源类型 计费公式 资源单价 计算资源 实例规格单价 * 计算节点个数 * 购买时长 请参见ModelArts价格详情中的“规格价格”。 上述示例配置的费用计算如下: