检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
量的要求较大,如果您的无监督文档量级过小,达不到预训练要求,您可以通过一些手段将其转换为有监督数据,再将转换后的领域知识与目标任务数据混合,使用微调的方式让模型学习。 这里提供了一些将无监督数据转换为有监督数据的方案,供您参考: 基于规则构建:您可以通过采用一些简单的规则来构建有监督数据。比如:
型消除语义歧义性,识别用户查询意图,并直接生成支持下游操作的结构化JSON信息。大模型的NL2JSON能力可以从自然语言输入抽取关键信息并转换为JSON格式输出,以供下游操作,从而满足该场景下客户需求。 金融场景下,NL2JSON能力可以有效消除用户语义歧义性,提高数据处理的灵活
大模型的计量单位token指的是什么 令牌(Token)是指模型处理和生成文本的基本单位。token可以是词或者字符的片段。模型的输入和输出的文本都会被转换成token,然后根据模型的概率分布进行采样或计算。 例如,在英文中,有些组合单词会根据语义拆分,如overweight会被设计为2个to
获取Token消耗规则 每个Token代表模型处理和生成文本的基本单位,它可以是一个单词、字符或字符的片段。模型的输入和输出都会被转换成Token,并根据模型的概率分布进行采样或计算。训练服务的费用按实际消耗的Token数量计算,即实际消耗的Token数量乘以Token的单价。为
创建数据集清洗任务 数据集创建完成后,可以使用数据清洗功能,对异常数据进行清理,或进行数据转换、过滤和去重等操作。 登录盘古大模型套件平台。 在左侧导航栏中选择“数据工程 > 数据清洗”,单击界面右上角“创建任务”。 图1 数据清洗 依据需要清洗的数据类型,选择对应的数据集和数据
转接至人工客服。这不仅增加了企业的运营成本,也影响了用户体验。盘古大模型的引入为这一问题提供了有效解决方案。 盘古大模型通过将客户知识数据转换为向量并存储在向量数据库中,利用先进的自然语言处理技术对用户输入的文本进行深度分析和理解。它能够精准识别用户的意图和需求,即使是复杂或模糊
阶段的稳定性。 平台支持通过以下清洗能力: 表1 清洗算子说明 算子类型 功能 说明 数据转换 全角转半角 将文本中的所有全角字符转换成半角字符。 中文繁简体互转 简体转换成繁体或者繁体转换成简体。 去除不可见字符 移除文本中不可见字符,如U+0000-U+001F。 去除表情符
本的基本单位。token可以是词或者字符的片段。模型的输入和输出的文本都会被转换成token,然后根据模型的概率分布进行采样或计算。不同系列模型在读取中文和英文内容时,字符长度转换为token长度的转换比如下。以N1为例,盘古模型1token≈0.75个英文单词,1token≈1
Css Embedding embedding_api = Embeddings.of("css") embedding单文本:把单个字符串转换为向量数据。(向量维度由模型确定)。 text = "this is a test text." # embed query. embedding
新、查找和清理操作。缓存还可以支持语义匹配和查询,通过向量和相似度的计算,实现对数据的语义理解和检索。 Vector向量存储:是一种将数据转换为数学表示的方法,它可以度量数据之间的关系和相似度。向量存储可以根据不同的词向量模型进行初始化、更新、查找和清理操作。向量存储还可以支持多
新、查找和清理操作。缓存还可以支持语义匹配和查询,通过向量和相似度的计算,实现对数据的语义理解和检索。 Vector向量存储:是一种将数据转换为数学表示的方法,它可以度量数据之间的关系和相似度。向量存储可以根据不同的词向量模型进行初始化、更新、查找和清理操作。向量存储还可以支持多
Embedding Embedding css = Embeddings.of(Embeddings.CSS); embedding单文本:把单个字符串转换为向量数据。(向量维度由模型确定)。 import java.util.List; String text = "this is a test
体曲线自主调节,提供全方位的支撑和舒适度。\n\n亲爱的朋友们,快来选购这款轻便折叠户外椅,让你的户外生活更加舒适、随心随行!赶快单击下方链接,实现你的户外梦想!"} {"context":"产品:毛绒玩具\n特点:柔软可爱,陪伴成长,给孩子无限温暖的拥抱。\n请根据以上的内容和要求扩写一篇带货口播文案,注意:1
概念名 说明 Token 令牌(Token)是指模型处理和生成文本的基本单位。Token可以是词或者字符的片段。模型的输入和输出的文本都会被转换成Token,然后根据模型的概率分布进行采样或者计算。 例如,在英文中,有些组合单词会根据语义拆分,如overweight会被设计为2个T
与上述的tool_provide呼应,在向tool_retriever中添加工具时,可以添加任意的元数据,python需要借助pickle将函数或类转换成字节流字符串存入CSS中,用于在tool_provider中把工具组装出来: from pydantic import BaseModel
描述清楚,如果Agent实际执行效果不符合预期,可以调整。 required。是否为可选参数。 注意:字段的命名需要以小写字母开头,否则在转换成标准的Json schema时会出现问题,导致模型精度受到影响。 上例中的InputParam为一个复杂的入参,如果工具的入参为基本类型,则不需要再额外定一个结构体,例如:
> 模型基础信息”章节。 说明: token是指模型处理和生成文本的基本单位。token可以是词或者字符的片段。模型的输入和输出的文本都会被转换成token,然后根据模型的概率分布进行采样或者计算。 user 否 String 用于代表用户的唯一标识符,字符串长度最大64,最小1。
微调数据清洗: 以下是该场景中实际使用的数据清洗策略,供您参考: 原始文本处理。基于爬虫、数据处理平台批量处理收集到的原始数据,需要将文件统一转换成纯文本的txt文件,对错误格式数据进行删除。 构建微调数据。生成垂域微调(问答对)数据,将问答对数据分为:单轮问答数据、多轮问答数据、检
> 模型基础信息”章节。 说明: token是指模型处理和生成文本的基本单位。token可以是词或者字符的片段。模型的输入和输出的文本都会被转换成token,然后根据模型的概率分布进行采样或者计算。 presence_penalty 否 Float 用于调整模型对新Token的处理
Token计算精确到1K Tokens,不足1K Tokens的部分舍去,按小时自动扣费。 变更配置 盘古NLP大模型的模型订阅服务和推理服务默认采用包周期计费,训练服务则默认采用按需计费。使用周期内不支持变更配置。 欠费 在使用云服务时,如果账户的可用额度低于待结算账单金额,即被判定为账户