检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
pore框架。这些子工具侧重不同的训练场景,可以定位模型训练中的精度问题。 支持精度预检,可扫描训练模型中的所有API进行API复现,给出精度情况的诊断和分析。 精度比对,对PyTorch整网API粒度的数据dump、精度比对,进而定位训练场景下的精度问题 支持溢出检测功能,判断
n量化和kvcache量化。 量化的一般步骤是:1、对浮点类型的权重镜像量化并保存量化完的权重;2、使用量化完的权重进行推理部署。 什么是W4A16量化 W4A16量化方案能显著降低模型显存以及需要部署的卡数(约75%)。大幅降低小batch下的增量推理时延。 约束限制 支持AWQ
无法再新建。如您有任何问题,可随时通过工单或者服务热线(4000-955-988或950808)与我们联系。 常见问题 下线镜像对现有用户的使用是否有影响? 下线镜像对已有用户不影响,用户可以继续使用已有实例启动Notebook,但是需要注意删除实例后无法再新建实例。 镜像下线后是否可以继续基于该镜像新建实例?
${USER_CONVERTED_CKPT_PATH}训练过程的权重保存路径,加载路径一致。 故障快恢依赖训练过程的权重保存路径。所以如果开启 MA_TRAIN_AUTO_RESUME=1, 则用户指定的权重加载路径${USER_CONVERTED_CKPT_PATH}不能是训练过程的权重保存路径。 步骤三 启动训练脚本
低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:per-group Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。
运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供:
运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供:
String 用户GaussDB(DWS)集群的IP地址。 port String 用户GaussDB(DWS)集群的端口。 queue_name String 表格数据集,DLI队列名。 subnet_id String MRS集群的子网ID。 table_name String
tch下的增量推理时延。支持AWQ量化的模型列表请参见表1。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化,量化方法为per-group。 Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。
述清楚人物四肢的角度、背景中物体的位置、光线照射的角度,使用Controlnet可以通过图像特征来为扩散模型的生成过程提供更加精细控制的方式。 将Controlnet适配到昇腾卡进行训练,可以提高能效、支持更大模型和多样化部署环境,提升昇腾云在图像生成和编辑场景下的竞争力。 本章节介绍SDXL&SD
算法名称。限制为1-64位只含数字、字母、下划线和中划线的名称。 description 否 String 对算法的描述,默认为“NULL”,字符串的长度限制为[0, 256]。 workspace_id 否 String 指定算法所处的工作空间,默认值为“0”。“0” 为默认的工作空间。 ai_project
剪枝 什么是剪枝 剪枝是一种大模型压缩技术的关键技术,旨在保持推理精度的基础上,减少模型的复杂度和计算需求,以便大模型推理加速。 剪枝的一般步骤是:1、对原始模型调用不同算法进行剪枝,并保存剪枝后的模型;2、使用剪枝后的模型进行推理部署。 常用的剪枝技术包括:结构化稀疏剪枝、半结构化稀疏剪枝、非结构化稀疏剪枝。
String 用户GaussDB(DWS)集群的IP地址。 port String 用户GaussDB(DWS)集群的端口。 queue_name String 表格数据集,DLI队列名。 subnet_id String MRS集群的子网ID。 table_name String
算法名称。限制为1-64位只含数字、字母、下划线和中划线的名称。 description 否 String 对算法的描述,默认为“NULL”,字符串的长度限制为[0, 256]。 workspace_id 否 String 指定算法所处的工作空间,默认值为“0”。“0” 为默认的工作空间。 ai_project
获取用户绑定APP的api列表 功能介绍 获取用户绑定app的API列表。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v1/{project_id}/
使用AWQ量化 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。多模态只支持hf上下载的awq权重,可跳过步骤一。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:W4A16 pe
per-channel 步骤一 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?so
使用AWQ量化工具转换权重 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel
运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供:
常见的磁盘空间不足的问题和解决办法 该章节用于统一整体所有的常见的磁盘空间不足的问题和解决办法。减少相关问题文档的重复内容。 问题现象 训练过程中复制数据/代码/模型时出现如下报错: 图1 错误日志 原因分析 出现该问题的可能原因如下: 本地数据、文件保存将"/cache"目录空间用完。