检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
执行以下命令,下载代码。 git clone https://github.com/facebookresearch/DiT.git cd Dit 执行以下命令,安装依赖项。 pip install diffusers==0.28.0 accelerate==0.30.1 timm==0.9.16 准备数据集。
PTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install auto-gptq pip install --upgrade accelerate optimum transformers
PTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install auto-gptq pip install --upgrade accelerate optimum transformers
PTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install auto-gptq pip install --upgrade accelerate optimum transformers
PTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install auto-gptq pip install --upgrade accelerate optimum transformers
atch_size,优化代码,合理聚合、复制数据。 请注意,数据文件大小不等于内存占用大小,需仔细评估内存使用情况。 退出码139 请排查安装包的版本,可能存在包冲突的问题。 排查办法 根据错误信息判断,报错原因来源于用户代码。 您可以通过以下两种方式排查: 线上环境调试代码(仅适用于非分布式代码)
“/home/ma-user/work”目录以及动态挂载在“/data”下的目录下的数据会保存,其余目录下内容会被清理。例如:用户在开发环境中的其他目录下安装的外部依赖包等,在Notebook停止后会被清理。您可以通过保存镜像的方式保留开发环境设置,具体操作请参考保存Notebook实例。 No
2-py_3.7-ubuntu_18.04-x86_64 request_mode Array of strings 请求模式,AI引擎支持部署为同步在线服务或异步在线服务。 sync:同步在线服务 async:异步在线服务 accelerators Array of Accelerator
监控安全风险 ModelArts支持监控ModelArts在线服务和对应模型负载,执行自动实时监控、告警和通知操作。 云监控可以帮助用户更好地了解服务和模型的各项性能指标。 详细内容请参见ModelArts支持的监控指标。 父主题: 安全
本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。 父主题: 使用自动学习实现物体检测
增量模型训练 什么是增量训练 增量训练(Incremental Learning)是机器学习领域中的一种训练方法,它允许人工智能(AI)模型在已经学习了一定知识的基础上,增加新的训练数据到当前训练流程中,扩展当前模型的知识和能力,而不需要从头开始。 增量训练不需要一次性存储所有的
当数据集使用完成或不再使用时,调用删除数据集接口删除数据集。 前提条件 已获取IAM的EndPoint和ModelArts的EndPoint。 确认服务的部署区域,获取项目名称和ID、获取帐号名和ID和获取用户名和ID。 已经准备好数据源,例如存放在OBS的“/test-obs/classify
本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。 父主题: 使用自动学习实现声音分类
/projects,其中{iam-endpoint}为IAM的终端节点,可以从地区和终端节点处获取。 响应示例如下,例如ModelArts部署的区域为"cn-north-4",响应消息体中查找“name”为"cn-north-4",其中projects下的“id”即为项目ID。 {
UTC'的毫秒数。 description String 模型描述信息。 source_type String 模型来源的类型,仅当模型为自动学习部署过来时有值,取值为“auto”。 父主题: 模型管理
附录:大模型推理常见问题 问题1:在推理预测过程中遇到NPU out of memory。 解决方法:调整推理服务启动时的显存利用率,将--gpu-memory-utilization的值调小。 问题2:在推理预测过程中遇到ValueError:User-specified max_model_len
ModelArts Standard自动学习所创建项目一直在扣费,如何停止计费? 对于使用公共资源池创建的自动学习作业: 登录ModelArts控制台,在自动学习作业列表中,删除正在扣费的自动学习作业。在训练作业列表中,停止因运行自动学习作业而创建的训练作业。在“在线服务”列表中
调用批量更新样本标签根据获取的智能标注样本列表确认智能标注结果。 前提条件 已获取IAM的EndPoint和ModelArts的EndPoint。 确认服务的部署区域,获取项目名称和ID、获取帐号名和ID和获取用户名和ID。 已准备好用于智能标注的图像分类的数据集,并获取数据集ID,例如“6mHUG
本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。 父主题: 使用自动学习实现文本分类
本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。 父主题: 使用自动学习实现图像分类