检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
开发盘古科学计算大模型 使用数据工程构建科学计算大模型数据集 训练科学计算大模型 部署科学计算大模型 调用科学计算大模型
output TaskOutputDto object 输出数据的信息。 config TaskConfigDto object 科学计算大模型配置信息。 表3 TaskInputDto 参数 参数类型 描述 type String 存储类型。 data Array of ObsStorageDto
开发盘古预测大模型 使用数据工程构建预测大模型数据集 训练预测大模型 部署预测大模型
开发盘古NLP大模型 使用数据工程构建NLP大模型数据集 训练NLP大模型 压缩NLP大模型 部署NLP大模型 评测NLP大模型 调用NLP大模型
填写输入参数时,deployment_id为模型部署ID,获取方式如下: 若调用部署后的模型,可在左侧导航栏中选择“模型开发 > 模型部署”,在“我的服务”页签,模型部署列表单击模型名称,在“详情”页签中,可获取模型的部署ID。 图3 部署后的模型调用路径 若调用预置模型,可在左侧导航栏中选择“模型开发
查看模型训练状态 在模型训练列表中查看训练任务的状态,各状态说明详见表1。 表1 训练状态说明 训练状态 训练状态含义 初始化 模型训练任务正在进行初始化配置,准备开始训练。 已完成 模型训练已完成。 运行中 模型正在训练中,训练过程尚未结束。 创建失败 训练任务创建失败。 训练失败 模型训练过
查看模型训练状态 在模型训练列表中查看训练任务的状态,各状态说明详见表1。 表1 训练状态说明 训练状态 训练状态含义 初始化 模型训练任务正在进行初始化配置,准备开始训练。 已完成 模型训练已完成。 运行中 模型正在训练中,训练过程尚未结束。 创建失败 训练任务创建失败。 训练失败 模型训练过
是 TaskOutputDto object 输出数据的信息。 config 是 TaskConfigDto object 科学计算大模型配置信息。 表4 TaskInputDto 参数 是否必选 参数类型 描述 type 是 String 存储类型,取值为obs。 data 是
2024年11月发布的版本,用于海洋基础要素预测,可支持1个实例部署推理。 Pangu-AI4S-Ocean_Regional_24h-20241130 2024年11月发布的版本,用于区域海洋基础要素预测,1个训练单元起训及1个实例部署。 Pangu-AI4S-Ocean_Ecology_24h-20241130
数据、训练模型,依赖专家经验进行算法参数调优,最后才能上线应用。基于ModelArts Studio平台开发工作流,将数据标注、模型训练、部署上线等繁杂的流程固化为一个流水线的步骤。通过大模型的能力,即使只有少量样本,也可以达到良好的模型泛化性和鲁棒性,解决碎片化AI需求的问题。
微调之后,才可支持推理部署。 Pangu-NLP-N2-Chat-32K-20241030 32K 4K 2024年10月发布版本,支持8K序列长度训练,4K/32K序列长度推理。全量微调32个训练单元起训,LoRA微调8个训练单元起训,4个推理单元即可部署。此模型版本差异化支持预训练特性、INT8量化特性。
是 TaskOutputDto object 输出数据的信息。 config 是 TaskConfigDto object 科学计算大模型配置信息。 表4 TaskInputDto 参数 是否必选 参数类型 描述 type 是 String 存储类型,取值为obs。 data 是
为什么微调后的盘古大模型的回答中会出现乱码 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果中出现了其他语言、异常符号、乱码等字符。这种情况可能是由于以下几个原因导致的,建议您依次排查: 数据质量:请检查训练数据中是否存在包含异常字符的数据,可以通过规则进行清洗。
为什么微调后的盘古大模型的回答会异常中断 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果不完整,出现了异常截断。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“最大Token限制”参数的设置,适当增加该参数的值,可
程中,通过设定训练指标来监控模型的表现,确保其达到预期的效果。完成微调后,将对用户模型进行评估并进行最终优化,以确保满足业务需求,然后将其部署和调用,用于实际应用。 CV大模型选择建议 选择合适的CV大模型类型有助于提升训练任务的准确程度。您可以根据模型适用场景,选择合适的模型,从而提高模型的整体效果,详见表1。
为什么微调后的盘古大模型总是重复相同的回答 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成了复读机式的结果,即回答中反复出现某一句话或某几句话。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“话题重复度控制”或“温度”或
为什么微调后的盘古大模型评估结果很好,但实际场景表现很差 当您在微调过程中,发现模型评估的结果很好,一旦将微调的模型部署以后,输入一个与目标任务同属的问题,回答的结果却不理想。这种情况可能是由于以下几个原因导致的,建议您依次排查: 测试集质量:请检查测试集的目标任务和分布与实际场
130 2024年11月发布的版本,支持4K序列长度推理,支持4个推理单元部署。 Pangu-NLP-BI-32K-20241130 2024年11月发布的版本,支持32K序列长度推理,支持8个推理单元部署。 在选择和使用盘古大模型时,了解不同模型所支持的操作行为至关重要。不同模
为什么微调后的盘古大模型只能回答训练样本中的问题 当您将微调的模型部署以后,输入一个已经出现在训练样本中的问题,模型生成的结果很好,一旦输入了一个从未出现过的数据(目标任务相同),回答却完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制
为什么在微调后的盘古大模型中输入训练样本问题,回答完全不同 当您将微调的模型部署以后,输入一个已经出现在训练样本中,或虽未出现但和训练样本差异很小的问题,回答完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的