检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
),帮助用户有效地将语言模型用于各种应用场景和研究领域。掌握提示词工程相关技能将有助于用户了解大型语言模型的能力和局限性。 提示工程不仅涉及设计和研发提示词,还包括与大型语言模型的交互和研发中的各种技能和技术。它在实现和对接大型语言模型、理解其能力方面扮演着关键角色。用户可以通过
数量乘以Token的单价。为了帮助用户更好地管理和优化Token消耗,平台提供了Token计算器工具。Token计算器可以帮助用户在模型训练前评估文本的Token数量,提供费用预估,并优化数据预处理策略。 使用Token计算器的步骤如下: 登录盘古大模型套件平台。 在“服务管理”
配置Cache(Python SDK) Cache缓存是一种临时存储数据的方法,它可以把常用的数据保存在内存或者其他设备中,当需要访问这些数据时,无需再去原始的数据源查找,而是直接从缓存中获取,从而节省时间和资源。 Cache缓存有以下几种操作: 初始化:指定缓存使用哪种存储方式
Agent在实际生产应用中往往涉及到的工具数量较多,如果把所用的工具全部添加至Agent会产生如下问题: 占用大量输入token。 和问题无关的工具太多,影响模型的判断。 通过Tool Retriever可以解决上述问题,其原理是在Agent运行前,先从所有可用的工具中选择与问题最相关的工具,再交给Agent去处理。
获取项目ID 从控制台获取项目ID 登录管理控制台。 在页面右上角的用户名的下拉列表中选择“我的凭证”。 图1 我的凭证 在“我的凭证”页面,获取项目ID(project_id),以及账号名、账号ID、IAM用户名和IAM用户ID。 在调用盘古API时,获取的项目id需要与盘古服
化能力和意图理解能力,导致用户需求难以准确捕捉,频繁转接至人工客服。这不仅增加了企业的运营成本,也影响了用户体验。盘古大模型的引入为这一问题提供了有效解决方案。 盘古大模型通过将客户知识数据转换为向量并存储在向量数据库中,利用先进的自然语言处理技术对用户输入的文本进行深度分析和理
当LLM被定义好之后,使用方式与盘古大模型相同,开源模型也支持Agent调用,可参考实例化Agent(Java SDK)。 自定义模型 如果使用的模型不是盘古或者兼容OpenAI-API的开源模型,如,闭源模型或者裸机部署的自定义推理服务,可以通过继承AbstractLLM自定义一个模型,示例代码如下: @Slf4j
Agent在实际生产应用中往往涉及到的工具数量较多,如果把所用的工具全部添加至Agent会产生如下问题: 占用大量输入token。 和问题无关的工具太多,影响模型的判断。 通过Tool Retriever可以解决上述问题,其原理是在Agent运行前,先从所有可用的工具中选择与问题最相关的工具,再交给Agent去处理,示例如下:
搭建数据清洗流程 将算子拖拽至“输入”、“输出”之间,即可完成清洗流程的搭建,搭建过程中可以通过“执行节点”功能查看算子对数据的清洗效果。算子功能的详细介绍请参见清洗算子功能介绍。 图3 执行节点 用户配置算子后推荐增加、显示备注信息,用于团队其他成员快速了解算子编排。 图4 增加并显示备注信息
多轮对话:基于对话问答功能,用户可以与模型进行自然而流畅的对话和交流。 图1 服务管理 图2 申请开通服务 您可按照需要选择是否开启内容审核。 开启内容审核后,可以有效拦截大模型输入输出的有害信息,保障模型调用安全,推荐进行开启。 图3 大模型内容审核 盘古大模型支持通过对接内容审核,实现
模型都能以高准确率完成任务,为用户提供高质量的输出结果。 这种卓越的表现源于其先进的算法和深度学习架构。盘古大模型能够深入理解语言的内在逻辑与语义关系,因此在处理复杂语言任务时展现出更高的精准度和效率。这不仅提高了任务的成功率,也大幅提升了用户体验,使盘古大模型成为企业和开发者构建智能应用的首选。
评估模型效果的方法有很多,通常可以从以下几个方面来评估模型训练效果: Loss曲线:通过Loss曲线的变化趋势来评估训练效果,确认训练过程是否出现了过拟合或欠拟合等异常情况。 模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测试集进行评估。通过查看测试集样本的PPL、BLEU和ROUGE等指标,
的无监督文档量级过小,达不到预训练要求,您可以通过一些手段将其转换为有监督数据,再将转换后的领域知识与目标任务数据混合,使用微调的方式让模型学习。 这里提供了一些将无监督数据转换为有监督数据的方案,供您参考: 基于规则构建:您可以通过采用一些简单的规则来构建有监督数据。比如: 表1
个子集。该方法通过创建“预设任务”让模型从数据中学习,从而生成有用的表示,可用于后续任务。它无需额外的人工标签数据,因为监督信号直接从数据本身派生。 有监督学习 有监督学习是机器学习任务的一种。它从有标记的训练数据中推导出预测函数。有标记的训练数据是指每个训练实例都包括输入和期望的输出。
盘古推理SDK简介 推理SDK概述 盘古大模型推理SDK是对REST API进行的封装,通过该SDK可以处理用户的输入,生成模型的回复,从而实现自然流畅的对话体验。 表1 推理SDK清单 SDK分类 SDK功能 支持语言 使用场景 推理SDK 对话问答(多轮对话)(/chat/completions)
工具依赖的信息,可以通过其他工具获取时,增加关联关系提示: @AgentTool(toolId = "query_reimbursement_limit", toolDesc = "通过用户ID、用户单据、用户最大报销比例获取用户报销额度", toolPrinciple = "请在有用户ID、
调测AI助手 在AI助手的创建页面可以直接进行调测,也可以在AI助手列表页进行调测。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发 > AI助手”,选择需要调测的AI助手,单击“调测”按钮。 图1 AI助手 在调测页面,可以调整AI助手的指令,输入问题后,单击“运行”获得模型回复结果。
部署模型 模型类型 推理资产占有数量 盘古-NLP-N1 系列模型 部署1实例占用0.125个推理单元。 盘古-NLP-N2 系列模型 部署1实例占用0.5个推理单元。 盘古-NLP-N4 系列模型 部署1实例占用1个推理单元。 父主题: 平台资源管理
考察模型逻辑 虽然模型的思考过程是个黑盒,但可以通过反问模型答案生成的逻辑或提问模型是否理解任务要求,考察模型生成的逻辑,提升模型思维过程的可解释性。 对于模型答案的反问 如果模型给出了错误的答案,可以反问模型回答的逻辑,有时可以发现错误回答的根因,并基于此修正提示词。 在反问时
评估完成后,进入“评估报告”页面,可以查看每条数据的评估结果。 在评估结果中,“预期结果”即为变量值(问题)所预设的期望回答,“生成结果”即模型回复的结果。通过比较“预期结果”与“生成结果”的差异可以判断提示词效果。 图3 查看评估报告 父主题: 批量评估提示词效果