检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
_data.json,数据大小:43.6 MB。 自定义数据 用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。 请注意huggingface中的数据集具有如下this格式。可以使用–json-key标
_data.json,数据大小:43.6 MB。 自定义数据 用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志
作。 在“声音分类”节点中,待训练状态由“运行中”变为“运行成功”,即完成模型的自动训练。 训练完成后,您可以单击声音分类节点上方的按钮,查看相关指标信息,如“准确率”、“评估结果”等。 表1 评估结果参数说明 参数 说明 recall:召回率 被用户标注为某个分类的所有样本中,
"modelarts:notebook:create" ], modelarts:sfsId SFS Turbo的ID,在SFS Turbo详情页查看。支持填写多个ID,例如: "modelarts:sfsId": [ "0e51c7d5-d90e-475a-b5d0-ecf896da3b0d"
API ID。 表2 Query参数 参数 是否必选 参数类型 描述 workspace_id 否 String 工作空间ID。获取方法请参见查询工作空间列表。未创建工作空间时默认值为“0”,存在创建并使用的工作空间,以实际取值为准。 请求参数 表3 请求Header参数 参数 是否必选
删除。 请求参数 表3 请求Header参数 参数 是否必选 参数类型 描述 X-Auth-Token 是 String 用户Token。通过调用IAM服务获取用户Token接口获取(响应消息头中X-Subject-Token的值)。 响应参数 状态码:200 表4 响应Body参数
停止Workflow 登录ModelArts管理控制台,在左侧导航栏选择“开发空间>Workflow”,进入Workflow总览页面。 可以通过“停止”按钮,主动停止正在运行的工作流,有2种操作方式: 工作流列表页: 当工作流处于“运行中”时,操作栏会出现“停止”按钮。单击“停止”
该字段内容填为“application/json;charset=utf8。 X-Auth-Token 是 String 用户Token。通过调用IAM服务获取用户Token接口获取(响应消息头中X-Subject-Token的值)。 表3 请求Body参数 参数 是否必选 参数类型
标注质量对于最终的模型精度有极大的影响,标注过程中尽量不要出现误标情况。 音频标注涉及到的标注标签和声音内容只支持中文和英文,不支持小语种。 数据上传至OBS 在本文档中,采用通过OBS管理控制台将数据上传至OBS桶。 上传OBS的文件规范: 如不需要提前上传训练数据,请创建一个空文件夹用于存放工程后期生成的文件。如
String 用户指定的network名称。 os.modelarts/workspace.id 否 String 工作空间ID。获取方法请参见查询工作空间列表。未创建工作空间时默认值为“0”,存在创建并使用的工作空间,以实际取值为准。 表5 NetworkSpec 参数 是否必选 参数类型
在“文本分类”节点中,待训练状态由“运行中”变为“运行成功”,即完成模型的自动训练。 图2 运行成功 训练完成后,您可以单击文本分类节点上方的按钮,查看相关指标信息,如“准确率”、“评估结果”等。评估结果参数说明请参见表1。 图3 模型评估报告 表1 评估结果参数说明 参数 说明 recall:召回率
json,数据大小:43.6 MB。 自定义数据 预训练数据:用户也可以自行准备预训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志
执行训练启动命令后,等待模型载入,当出现“training”关键字时,表示开始训练。训练过程中,训练日志会在最后的Rank节点打印。 图1 等待模型载入 最后,请参考查看日志和性能章节查看预训练的日志和性能。 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6
scripts/llama2/0_pl_sft_13b.sh 或者: sh scripts/llama2/0_pl_sft_13b.sh 最后,请参考查看日志和性能章节查看SFT微调的日志和性能。 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6
scripts/llama2/0_pl_lora_13b.sh 或者: sh scripts/llama2/0_pl_lora_13b.sh 最后,请参考查看日志和性能章节查看LoRA微调的日志和性能。 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6
pe信息,并且在模型转换的编译阶段完成对应shape的编译任务,从而能够在推理时支持多种shape的输入。 动态batch 在模型转换阶段通过--configFile参数指定配置文件,并且在配置文件中配置input_shape及dynamic_dims动态参数。其中input_s
数据集。 准备镜像 准备训练模型适用的容器镜像。 预训练 预训练 介绍如何进行预训练,包括训练数据处理、超参配置、训练任务、断点续训及性能查看。 微调训练 SFT全参微调 介绍如何进行SFT全参微调。 LoRA微调训练 介绍如何进行LoRA微调训练。 父主题: 主流开源大模型基于Lite
per-channel Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?s
在左上角的服务列表中,选择ModelArts服务,进入ModelArts管理控制台。 在ModelArts管理控制台,可正常创建Notebook、训练作业、注册镜像。 验证SFS权限。 在左上角的服务列表中,选择SFS服务,进入SFS管理控制台。 在SFS管理控制台,在SFS Turbo中单击右上
3指使用0-3卡执行训练任务。 训练成功标志 “***** train metrics *****”关键字打印 训练完成后,请参考查看日志和性能章节查看指令微调的日志和性能。 如训练过程中遇到“NPU out of memory”“Permission denied” 问题可参考 附录:训练常见问题解决。