检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径: 训练完成后,以 llama2-13b 为例,输出数据路径为:/home/ma-u
sh install.sh rm -rf git-lfs-linux-arm64-v3.2.0.tar.gz git-lfs-3.2.0 通过git下载sd PyTorch模型。 该模型用于获取模型shape,也可以转换生成onnx模型。后文中的modelarts-ascend仓
其他参数请根据界面提示填写。 设置完成后,单击“确定”,即进行增量训练。系统将自动跳转至“模型训练”页面,待训练完成后,您可以在此页面中查看训练详情,如“训练精度”、“评估结果”、“训练参数”等。 图1 选择增量训练版本 父主题: Standard自动学习
h、MindSpore等)下均可以使用。 MoXing Framework模块提供了OBS中常见的数据文件操作,如读写、列举、创建文件夹、查询、移动、复制、删除等。 在ModelArts Notebook中使用MoXing接口时,可直接调用接口,无需下载或安装SDK,使用限制比ModelArts
参数 参数类型 描述 file_name String yaml文件名称。 content String yaml文件内容。 请求示例 如下查询algorithm_type为hpo且algorithm_name为Bayes的yaml配置文件内容。 GET https://endpo
多模态的主要目标是利用来自多种模态的信息来提升任务的表现力,提供更丰富的用户体验,或是获取更全面的数据分析结果。例如,在实际应用场景中,可以通过结合图像和文本信息来进行更好的对象识别或情感分析。 此外,多模态还可以细分为以下几个方面: 多模态理解:如何让计算机从不同种类的数据源中抽
com/deep-learning/tf-1.13.2:latest 图2 上传镜像 完成镜像上传后,在“容器镜像服务控制台>我的镜像”页面可查看已上传的自定义镜像。 “swr.example.com/deep-learning/tf-1.13.2:latest”即为此自定义镜像的“SWR_URL”。
#检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward
Gallery。对于支持部署为AI应用的AI Gallery模型,可将此模型部署为AI应用,具体可参见将AI Gallery中的模型部署为AI应用。 发布后的资产,可通过微调大师训练模型和在线推理服务部署模型,具体可参见使用AI Gallery微调大师训练模型、使用AI Gallery在线推理服务部署模型。
填写资产简介,镜像发布后将作为副标题显示在镜像页签上,方便用户快速了解资产。 支持0~90个字符,请勿在描述中输入涉政、迷信、违禁等相关敏感词,否则发布审核无法通过。 创建完成后,跳转至镜像详情页。 上传镜像文件 在镜像详情页,选择“镜像文件”页签。 单击“添加文件”,进入上传文件页面,选择本地的数据
nvidia-modprobe是一个Linux工具,用于在系统中加载NVIDIA驱动程序及其相关的内核模块。在Linux系统上安装NVIDIA显卡驱动后,需要通过“nvidia-modprobe”命令来加载相应的内核模块,以便让显卡驱动正常工作。 通常情况下,在安装NVIDIA驱动时,会自动执行“n
String MRS集群ID。可登录MRS控制台查看。 cluster_mode 否 String MRS集群运行模式。可选值如下: 0:普通集群 1:安全集群 cluster_name 否 String MRS集群名称。可登录MRS控制台查看。 database_name 否 String
s/llm_train/saved_dir_for_output/llama2-13b/saved_models/。 更多查看训练日志和性能操作,请参考查看日志和性能章节。 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU训练指导(6.3.906)
能力。 性能调优可以先将重点放在NPU不亲和的问题处理上,确保一些已知的性能问题和优化方法得到较好的应用。通用的训练任务调优、参数调优可以通过可观测数据来进行分析与优化,一般来说分段对比GPU的运行性能会有比较好的参考。算子级的调优某些情况下如果是明显的瓶颈或者性能攻坚阶段,考虑
执行训练启动命令后,等待模型载入,当出现“training”关键字时,表示开始训练。训练过程中,训练日志会在最后的Rank节点打印。 图1 等待模型载入 更多查看训练日志和性能操作,请参考查看日志和性能章节。 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU训练指导(6.3.905)
m_train/saved_dir_for_output/llama2-13b/saved_models/。 训练完成后,请参考查看日志和性能章节查看LoRA微调训练的日志和性能。 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU训练指导(6.3.906)
确保容器可以访问公网。 Step1 检查环境 请参考Lite Server资源开通,购买Lite Server资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 购买Lite Server资源时如果无可选资源规格,需要联系华为云技术支持申请开通。 当容器需要提供服
PoolMetaLabels 参数 参数类型 描述 os.modelarts/workspace.id String 工作空间ID。获取方法请参见查询工作空间列表。未创建工作空间时默认值为“0”,存在创建并使用的工作空间,以实际取值为准。 os.modelarts/name String
--workers:设置数据处理时,要执行的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径: 训练完成后,以 llama2-13b 为例,输出数据路径为:/home/ma-u
数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 微调数据集预处理参数说明 微调包含SFT和LoRA微调。数据集预处理脚本参数说明如下: --input:原始数据集的存放路径。