检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
深度学习是机器学习的一种,而机器学习是实现人工智能的必经路径。深度学习的概念源于人工神经网络的研究,含多个隐藏层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。研究深度学习的动机在于建立模拟人脑进行分析学
务中的统计挑战。本书中,我们将介绍深度学习如何引入额外的(显示的和隐式的)先验去降低复杂任务中的泛化误差。这里,我们解释为什么单是平滑先验不足以应对这类任务。有许多不同的方法来隐式地或显式地表示学习函数应该是光滑或局部不变的先验。所有这些不同的方法都旨在鼓励学习过程能够学习出函数
从整个机器学习的任务划分上来看,机器学习可以分为有监督学习、无监督学习和半监督学习及强化学习。图像、文本等深度学习的应用都属于有监督学习范畴。自编码器和生成式对抗网络可以算在无监督深度学习范畴内。最后就剩下强化学习了。强化学习发展到现在,早已结合了神经网络迸发出新的活力,强化学习结合深度学习已经形成了深度强化学习(Deep
限速。负责任的简化学习的不仅使模型足够轻量级以供使用,而且确保它能够适应数据集中没有出现过的角落情况。在深度学习的研究中,简化学习可能是最不受关注的,因为“我们通过一个可行的架构尺寸实现了良好的性能” 并不像 “我们通过由数千千万万个参数组成的体系结构实现了最先进的性能”一样吸引
最有效的现代优化算法是基于梯度下降的,但是很多有用的损失函数,如 0 − 1 损失,没有有效的导数(导数要么为零,要么处处未定义)。这两个问题说明,在深度学习中我们很少使用经验风险最小化。反之,我们会使用一个稍有不同的方法,我们真正优化的目标会更加不同于我们希望优化的目标。
C=AB需要注意的是,两个矩阵的标准乘积不是指两个矩阵中对应元素的乘积。不过,那样的矩阵操作确实是存在的,称为元素对应乘积或者Hadamard乘积,记为A@B。两个相同维数的向量x和y的点积可看作矩阵乘积x T y。矩阵乘积运算有许多有用的性质,从而使矩阵的数学分析更加方便。比
这是最大和最小特征值的模之比。当该数很大时,矩阵求逆对输入的误差特别敏感。 这种敏感性是矩阵本身的固有特性,而不是矩阵求逆期间舍入误差的结果。即使我们乘以完全正确的矩阵逆,病态条件数的矩阵也会放大预先存在的误差。在实践中,该错误将与求逆过程本身的数值误差进一步复合。
偏差和方差度量着估计量的两个不同误差来源。偏差度量着离真实函数或参数的误差期望。而方差度量着数据上任意特定采样可能导致的估计期望的偏差。当可以选择一个偏差更大的估计和一个方差更大的估计时,会发生什么呢?我们该如何选择?例如,想象我们希望近似图5.2中的函数,我们只可以选择一个偏差较大的估计或一
algorithm) 训练含有很多特征的数据集,然后学习出这个数据集上有用的结构性质。在深度学习中,我们通常要学习生成数据集的整个概率分布,显式地,比如密度估计,或是隐式地,比如合成或去噪。还有一些其他类型的无监督学习任务,例如聚类,将数据集分成相似样本的集合。
区别最大的部分,可以看作是特征学习过程。具体的,先用无标定数据训练第一层,训练时先学习第一层的参数,这层可以看作是得到一个使得输出和输入差别最小的三层神经网络的隐层,由于模型容量的限制以及稀疏性约束,使得得到的模型能够学习到数据本身的结构,从而得到比输入更具有表示能力的特征;在学
些端云联合学习方法和框架被提出来,旨在联合多个端侧设备共同训练一个全局模型,并实现端侧隐私保护。Google率先于2016年提出了联邦学习方法和框架。杨强等又提出了横向联邦学习、纵向联邦学习、联邦迁移学习以及联邦强化学习等方法及对应的框架。端侧推理、迁移学习和联邦学习属于端云协同
更确切的说,他们说明分段线性网络(可以通过整流非线性或 maxout 单元获得)可以表示区域的数量是网络深度的指数级的函数。图 6.5 解释了带有绝对值整流的网络是如何创建函数的镜像图像的,这些函数在某些隐藏单元的顶部计算,作用于隐藏单元的输入。每个隐藏单元指定在哪里折叠输入空
在深度学习的背景下,半监督学习通常指的是学习一个表示 h = f(x)。学习表示的目的是使相同类中的样本有类似的表示。无监督学习可以为如何在表示空间聚集样本提供有用线索。在输入空间紧密聚集的样本应该被映射到类似的表示。在许多情况下,新空间上的线性分类器可以达到较好的泛化 (Belkin
科技公司通过基于GAN的深度学习开发了一种名为“自动全身模型生成人工智能”的技术,他们完全是由人工智能虚拟而成,时尚品牌或广告代理商因而可以不用支付模特酬劳,也不用负担拍摄相关的人员、场地、灯光、设备、甚至是餐饮等成本,这意味着人工智能已经完全可以取代人类模特拍摄时尚宣传广告了。
是机器学习历史上非常困难的领域:接近人类水平的图像分类接近人类水平的语音识别接近人类水平的手写文字转录更好的机器翻译更好的文本到语音转换数字助理接近人类水平的自动驾驶更好的广告定向投放更好的网络搜索结果能够回答用自然语言提出的问题在围棋上战胜人类我们仍然在探索深度学习能力的边界。
全托管基于容器的serverless服务,您无需关心升级与维护,安心搞业务简单易用预置多种网络模型、向导式开发界面、一键开启模型训练与部署开发工作量少自研MoXing分布式框架,让您的分布式训练代码开发量缩短近10倍训练速度快1000块GPU集群和0.8的线性加速比,原先一个月的模型训练
出十分有效的深度学习模型。小结由于优化算法的目标函数通常是一个基于训练数据集的损失函数,优化的目标在于降低训练误差。由于深度学习模型参数通常都是高维的,目标函数的鞍点通常比局部最小值更常见。练习对于深度学习中的优化问题,你还能想到哪些其他的挑战?本文摘自《动手学深度学习》动手学深度学习作者:阿斯顿·张(Aston
该选择的模型。从贝叶斯估计的角度来看,正则化项对应于模型的先验概率。可以假设复杂的模型有较大的先验概率,简单的模型有较小的先验概率。需要注意的是,在正则化的时候,bais是不需要正则化的,不然可能会导致欠拟合!下面介绍一些常见的正则化方式:L2正则化:对于网络中的每个权重,向目标函数中增加一个,其中是正
数的性能。Glorot et al. (2011a) 说明,在深度整流网络中的学习比在激活函数具有曲率或两侧饱和的深度网络中的学习更容易。整流线性单元还具有历史意义,因为它们表明神经科学继续对深度学习算法的发展产生影响。Glorot et al. (2011a) 从生物学考虑整流
数的性能。Glorot et al. (2011a) 说明,在深度整流网络中的学习比在激活函数具有曲率或两侧饱和的深度网络中的学习更容易。整流线性单元还具有历史意义,因为它们表明神经科学继续对深度学习算法的发展产生影响。Glorot et al. (2011a) 从生物学考虑整流