已找到以下 10000 条记录
  • 深度学习框架TensorFlow

        TensorFlow是一个基于数据流编程(dataflow programming)符号数学系统,被广泛应用于各类机器学习(machine learning)算法编程实现,其前身是谷歌神经网络算法库DistBelief   。Tensorflow拥有多层级结构,可部署于各

    作者: QGS
    555
    0
  • 深度学习TensorBoard错误

    No dashboards are active for the current data set. 特地重新训练了,记下来日志目录,都是创建TensorBoard还是错误,不知道怎么回事,求解

    作者: timo
    4077
    2
  • 资料学习 - 开源深度学习框架tinygrad

    深度学习时代,谷歌、Facebook、百度等科技巨头开源了多款框架来帮助开发者更轻松地学习、构建和训练不同类型神经网络。而这些大公司也花费了很大精力来维护 TensorFlow、PyTorch 这样庞大深度学习框架。除了这类主流框架之外,开发者们也会开源一些小而精框架或者库。比如今年

    作者: RabbitCloud
    729
    5
  • 深度学习笔记》二

    MNIST数据集是由Yann LeCun等人创建。 Yann LeCun是一位法国计算机科学家,他是深度学习先驱者之一。该数据集是由他创建,旨在为机器学习算法提供一个常见基准测试。 MNIST数据集包含手写数字图像,它是一个非常流行数据集,被广泛用于图像识别和深度学习模型评估。该数据集共有60

    作者: 黄生
    发表时间: 2023-08-27 19:55:43
    28
    0
  • 深度学习笔记》三

    LeCun提出神经网络结构,所以命名LeNet. 而他也赢得了"卷积神经网络之父“美誉。 然而在LeNet提出后十几年里,由于神经网络可解释性较差和计算资源限制等原因,神经网络一直处于发展低谷阶段。 转折点 2012年 也是现代意义深度学习元年 Alex

    作者: 黄生
    发表时间: 2023-08-28 08:51:32
    33
    0
  • 深度学习笔记》六

    采用编码和解码网络结构,此前多层卷积和池化过程可以视为图像编码过程,即不断地下采样过程。 那解码过程就很好理解了,可以将解码理解为编码逆运算,对编码输出特征图进行不断地上采样逐渐得到一个与原始输入大小一致全分辨率分割图。 全卷积网络(Fully Convolutional

    作者: 黄生
    发表时间: 2023-12-19 22:49:13
    0
    0
  • 深度学习

    深度学习是实现机器学习一种技术。早期机器学习研究者中还开发了一种叫人工神经网络算法,但是发明之后数十年都默默无闻。神经网络是受人类大脑启发而来:神经元之间相互连接关系。但是,人类大脑中神经元可以与特定范围内任意神经元连接,而人工神经网络中数据传播要经历不同层,传播

    作者: feichaiyu
    发表时间: 2019-12-16 00:07:41
    3780
    0
  • 《MXNet深度学习实战》—1.2 深度学习框架

    1.2 深度学习框架目前大部分深度学习框架都已开源,不仅提供了多种多样接口和不同语言API,而且拥有详细文档和活跃社区,因此设计网络更加灵活和高效。另外,几乎所有的深度学习框架都支持利用GPU训练模型,甚至在单机多卡和分布式训练方面都有很好支持,因此训练模型时间也大大

    作者: 华章计算机
    发表时间: 2019-06-16 16:24:22
    3395
    0
  • 深度学习=炼金术?

    深度学习是目前人工智能最受关注领域,但黑盒学习法使得深度学习面临一个重要问题:AI能给出正确选择,但是人类却并不知道它根据什么给出这个答案。本期将分享深度学习起源、应用和待解决问题;可解释AI研究方向和进展。

    主讲人:华为MindSpore首席科学家,陈雷
    直播时间:2020/03/27 周五 14:00 - 15:00
  • 深度学习修炼(一)——从机器学习转向深度学习

    说,各种深度学习框架已经提供了我们所需各种颜料。我们要做,就是利用不同颜料,在空白纸上,一笔一划画出我们所需网络。 深度学习改变了传统互联网业务。第一次听到这个名词时可能大家都会对这方面的知识感到一头雾水,到底什么是深度学习?实际上,深度学习已经应用到生活中点点滴滴

    作者: ArimaMisaki
    发表时间: 2022-08-08 16:45:09
    244
    0
  • 深度学习LSTM模型

    长短期记忆(Long short-term memory, LSTM)是一种特殊RNN,主要是为了解决长序列训练过程中梯度消失和梯度爆炸问题。简单来说,就是相比普通RNN,LSTM能够在更长序列中有更好表现。

    作者: 我的老天鹅
    1892
    10
  • 走近深度学习 认识MoXing

    深度学习服务是基于华为云强大高性能计算提供一站式深度学习平台服务、DLS视频教程,可帮助您快速了解DLS。

  • 深度学习现实应用《深度学习与Mindspore实践》今天你读书了吗?

    换成文本技术。从早期基于模板方法到严格统计模型,再到如今深度模型,语音识别技术已经经历了几代更迭。 图像识别图像识别是深度学习最成功应用之一。深度学习在计算机视觉领域突破发生在2012年,Hinton教授研究小组利用卷积神经网络架构(AlexNet)大幅降低了ImageNet

    作者: QGS
    1026
    2
  • 深度残差收缩网络:一种深度学习故障诊断算法

    png【翻译】如第一部分所述,作为一种潜在、能够从强噪声振动信号中学习判别性特征方法,本研究考虑了深度学习和软阈值化集成。相对应地,本部分注重于开发深度残差网络两个改进变种,即通道间共享阈值深度残差收缩网络、通道间不同阈值深度残差收缩网络。对相关理论背景和必要想法进行了详细介绍。A.

    作者: hw9826
    发表时间: 2020-08-31 11:54:08
    4310
    0
  • 深度学习笔记》一

    无监督机器学习应该更高级一些,因为它有更多一点无为而治意思在里面。 人类是AI父母, 因为人类中是有好部分,和坏部分,简单说有好人和坏人 对于通用性AI,(比如现在很火chatGPT这种) 好人训练出AI,就是好AI 坏人训练出AI,就是坏AI AI不仅仅是一个工

    作者: 黄生
    发表时间: 2023-08-27 19:11:55
    36
    0
  • 深度学习随机取样、学习

    得到更好性能。学习率,即参数到达最优值过程速度快慢,当你学习率过大,即下降快,很容易在某一步跨过最优值,当你学习率过小时,长时间无法收敛。因此,学习率直接决定着学习算法性能表现。可以根据数据集大小来选择合适学习率,当使用平方误差和作为成本函数时,随着数据量增多,学

    作者: 运气男孩
    717
    0
  • 深度学习随机取样、学习

    得到更好性能。学习率,即参数到达最优值过程速度快慢,当你学习率过大,即下降快,很容易在某一步跨过最优值,当你学习率过小时,长时间无法收敛。因此,学习率直接决定着学习算法性能表现。可以根据数据集大小来选择合适学习率,当使用平方误差和作为成本函数时,随着数据量增多,学

    作者: 运气男孩
    1444
    5
  • 学习笔记 - 解释深度神经网络

    深度神经网络给人以一种神秘力量,它为什么能有效地完成那么多出色任务?如何解释网络中特征含义是解密深度神经网络一个有效方法。下面这篇论文《Shapley Explanation Networks》基于Shapley Values来进行网络特性解释,其阐述如下:Shaple

    作者: RabbitCloud
    746
    2
  • 深度学习之机器学习算法效果

    合。通俗地,模型容量是指其拟合各种函数能力。容量低模型可能很难拟合训练集。容量高模型可能会过拟合,因为记住了不适用于测试集训练集性质。        一种控制训练算法容量方法是选择假设空间(hypothesis space),即能够选为解决方案学习算法函数集。例如,

    作者: 小强鼓掌
    726
    3
  • 深度学习神经网络

    想要得到。因此,我们说输入层和中间层被紧密连接起来了。值得注意是神经网络给予了足够多关于z和y数据,给予了足够训练样本有关c和y。神经网络非常擅长计算从c到g精准映射函数。    这就是一个基础神经网络。你可能发现你自己神经网络在监督学习环境下是如此有效和强

    作者: 运气男孩
    656
    2