检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
on device”。 同一目录下创建较多文件,为了加快文件检索速度,内核会创建一个索引表,短时间内创建较多文件时,会导致索引表达到上限,进而报错。 触发条件和下面的因素有关: 文件名越长,文件数量的上限越小。 blocksize越小,文件数量的上限越小。( blocksize,系统默认
该目录下主要放置性能、精度任务的yaml配置文件,包含性能基线、精度基线、训练最佳实践参数等,以上配置文件仅供参考。 代码上传至OBS 本地完成代码包AscendCloud-LLM-xxx.zip的解压,将llm_train文件上传至OBS中。 结合准备数据、准备权重、准备代码,将数据集、原始权重、代码文件都上传至OBS后,OBS桶的目录结构如下。
Torch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。 Ascend PyTorch Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTor
Torch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。 Ascend PyTorch Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTor
上传OBS的文件规范: 文件名规范:不能有+、空格、制表符。 如不需要提前上传训练数据,请创建一个空文件夹用于存放工程后期生成的文件。如:“/bucketName/data-cat”。 如需要提前上传待标注的图片,请创建一个空文件夹,然后将图片文件保存在该文件夹下,图片的目录
基本配置 权限配置 创建网络 专属资源池VPC打通 ECS服务器挂载SFS Turbo存储 在ECS中创建ma-user和ma-group obsutil安装和配置 (可选)工作空间配置 父主题: 专属资源池训练
# config配置文件目录 |──config/ # 配置文件 |──deepspeed/ # deepspeed配置json文件 |──performance_cfgs
说明: 只有北京四区域支持限时免费规格。 如果您购买了套餐包,可优先选择您对应规格的套餐包,在“配置费用”处会显示您的套餐余量,以及超出的部分如何计费,请您关注,避免造成不必要的资源浪费。 单击“创建项目”,声音分类项目创建成功后页面自动跳转到“自动学习工作流”。 声音分类项目的工作流,将依次运行如下节点:
当AI应用的状态变为“待启动”时,表示创建完成。 启动AI应用 上传AI应用的运行文件“app.py”。在AI应用详情页,选择“应用文件”页签,单击“添加文件”,进入上传文件页面。 运行文件的开发要求请参见准备AI应用运行文件app.py。 上传单个超过5GB的文件时,请使用Gallery CLI工具。CLI工具的获取和使用请参见Gallery
请参考DevServer资源开通,购买DevServer资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。
说明: 只有北京四区域支持限时免费规格。 如果您购买了套餐包,可优先选择您对应规格的套餐包,在“配置费用”处会显示您的套餐余量,以及超出的部分如何计费,请您关注,避免造成不必要的资源浪费。 单击“创建项目”,物体检测项目创建成功后页面自动跳转到“自动学习工作流”。 物体检测项目的工作流,将依次运行如下节点:
说明: 只有北京四区域支持限时免费规格。 如果您购买了套餐包,可优先选择您对应规格的套餐包,在“配置费用”处会显示您的套餐余量,以及超出的部分如何计费,请您关注,避免造成不必要的资源浪费。 单击“创建项目”,文本分类项目创建成功后页面自动跳转到“自动学习工作流”。 文本分类项目的工作流,将依次运行如下节点:
容器镜像选择上一步上传到SWR的镜像。 代码目录 必填,选择训练代码文件所在的OBS目录。 需要提前将代码上传至OBS桶中,目录内文件总大小要小于或等于5GB,文件数要小于或等于1000个,文件深度要小于或等于32。 训练代码文件会在训练作业启动的时候被系统自动下载到训练容器的“${MA_
部署开发环境本地服务Predictor,即将模型文件部署在开发环境中,其环境规格取决于开发环境资源规格;例如在一个modelarts.vm.cpu.2u的Notebook中,部署本地Predictor,其运行环境就是cpu.2u。 部署在线服务Predictor,即将存储在OBS中的模型文件部署到线上服务管理
错误的发生。 export PYTORCH_NPU_ALLOC_CONF = expandable_segments:True 将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等
ssion鉴权。 将自定义的推理文件和模型配置文件保存在训练生成的模型文件目录下。如训练生成的模型保存在“/home/ma-user/work/tensorflow_mlp_mnist_local_mode/train/model/”中,则推理文件“customize_service
可遵循以下步骤操作。 步骤一:资源下载 Python依赖包下载:进入 scripts/install.sh 文件中,找到需要安装的pip文件,如下列所示。直接下载pip文件,注意:下载要求的版本。 pip install numpy==1.22.0 \ t
保存训练过程中记录的程序堆栈信息日志 PLOG 文件。示例中,默认保存在“saved_dir_for_output/plog”文件夹下。如果用户需要修改,可添加并自定义该变量。 SAVE_INTERVAL 10 表示训练间隔多少step,则会保存一次权重文件。 CONVERT_MG2HF TRUE
运行结果将存储在output文件夹中,如果用户指定了output_path,会指定位置保存,如果不指定则在当前代码执行目录生成文件夹保存输出。整体运行的结果都存放在output文件夹中,每转一次模型就会根据模型名称以及相关参数生成结果文件,如下图所示。 图3 output文件 在每次运行的结
重复打印日志,该日志表示正在读取远端存在的文件,当文件列表读取完成以后,开始下载数据。如果文件比较多,那么该过程会消耗较长时间。 处理方法 在创建训练作业时,数据可以保存到OBS上。不建议使用TensorFlow、MXNet、PyTorch的OBS接口直接从OBS上读取数据。 如果文件较小,可以将OBS上的数据保存成“