检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
深度学习的现实应用近年来掀起的深度学习革命已经深刻地改变了诸多应用领域,并将在越来越多的领域取得成功。其中最广为人知的领域包括自动语音识别、图像识别、自然语言理解及很多其他交叉领域(如医疗、生物、金融等)一、语音识别在语音识别和智能语音助手领域,我们可以利用深度神经网络开发出更准
1.2.8 文字识别计算机文字识别,俗称光学字符识别(Optical Character Recognition),是利用光学扫描技术将票据、报刊、书籍、文稿及其他印刷品的文字转化为图像信息,再利用文字识别技术将图像信息转化为可以使用的计算机输入技术。该技术可应用于如表1-4所示
什么是深度学习 要理解什么是深度学习,人们首先需要理解它是更广泛的人工智能领域的一部分。简而言之,人工智能涉及教计算机思考人类的思维方式,其中包括各种不同的应用,例如计算机视觉、自然语言处理和机器学习。 机器学习是人工智能的一个子集,它使计算机在没有明确编程的情况下能够更好地完成
深度学习是支撑人工智能发展的核心技术,云服务则是深度学习的主要业务模式之一。OMAI深度学习平台(以下简称OMAI平台)即是在上述前提下诞生的平台软件。OMAI深度学习平台是具备深度学习算法开发、模型训练、推理服务等能力的一站式平台软件。OMAI平台以支持高性能计算技术和大规模分
为众所周知的“深度学习’’。这个领域已经更换了很多名称,它反映了不同的研究人员和不同观点的影响。全面地讲述深度学习的历史超出了本书的范围。然而,一些基本的背景对理解深度学习是有用的。一般来说,目前为止深度学习已经经历了三次发展浪潮:20世纪40年代到60年代深度学习的雏形出现在控
同的特征置于哪一层。也就是说,相比于传统机器学习算法需要提供人工定义的特征,深度学习可以自己学习如何提取特征。因此,相比于传统的机器学习算法,深度学习并不依赖复杂且耗时的手动特征工程。深度学习中的“深度”体现在将数据转换为所需要数据的层数之深。给定模型进行数据输入,可以将描述模型
首先要明白什么是深度学习?深度学习是用于建立、模拟人脑进行分析学习的神经网络,并模仿人脑的机制来解释数据的一种机器学习技术。它的基本特点是试图模仿大脑的神经元之间传递,处理信息的模式。最显著的应用是计算机视觉和自然语言处理(NLP)领域。显然,“深度学习”是与机器学习中的“神经网络
回想一下Bagging学习,我们定义 k 个不同的模型,从训练集有替换采样构造k 个不同的数据集,然后在训练集 i 上训练模型 i。Dropout的目标是在指数级数量的神经网络上近似这个过程。具体来说,在训练中使用Dropout时,我们会使用基于小批量的学习算法和较小的步长,如梯
发挥作用的一个简单例子说起:学习 XOR 函数。 XOR 函数(“异或” 逻辑)是两个二进制值 x1 和 x2 的运算。当这些二进制值中恰好有一个为 1 时,XOR 函数返回值为 1。其余情况下返回值为 0。XOR 函数提供了我们想要学习的目标函数 y = f∗(x)。我们的模型给出了一个函数
在深度学习时代,谷歌、Facebook、百度等科技巨头开源了多款框架来帮助开发者更轻松地学习、构建和训练不同类型的神经网络。而这些大公司也花费了很大的精力来维护 TensorFlow、PyTorch 这样庞大的深度学习框架。除了这类主流框架之外,开发者们也会开源一些小而精的框架或者库。比如今年
确的数值关系。 4.4 语音信号的频域分析 语音信号的频域分析就是分析语音信号的频域持征。从广义上讲,语音信号的频域分析包括语音信号的频谱、功率谱、倒频谱、频谱包络分析等,而常用的频域分析方法有带通滤波器组法、傅里叶变换法、线件预测法等几种。因为语音波是一个非平稳过程,因此适用
年多伦多举行的一场人工智能会议上,深度学习“教父” Geoffrey Hinton 曾说过,“如果你是一名放射科医生,那么你的处境就像一只已身在悬崖边缘却毫不自知的郊狼。”他认为,深度学习非常适合读取核磁共振(MRIs)和 CT 扫描图像,因此我们应该“停止培训放射科医生”,而且在五年内,深度学习会有更大的进步。然而,时间快进到
深度学习是机器学习的一种,而机器学习是实现人工智能的必经路径。深度学习的概念源于人工神经网络的研究,含多个隐藏层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。研究深度学习的动机在于建立模拟人脑进行分析学
近年来,为了提高学习任务在图数据集上的性能,人们提出了各种图对比学习模型。虽然有效且普遍,但这些模型通常是经过仔细定制的。特别是,尽管所有最近的研究都创建了两种对比的视角,但它们在视图增强、架构和目标方面存在很大差异。如何针对特定的图学习任务和数据集从零开始建立你的图对比学习模型仍然是
老师给了我们个任务,用mindSpore完成一个深度学习,求大佬指路,站内有什么方便的教程。要求不能是花卉识别、手写体数字识别、猫狗识别,因为这些按教程已经做过了(然而我还是不会mindSpore)。尽量简单,我们只要是个深度学习就能完成任务。
本课程由华为诺亚的宋老师介绍联邦学习在语音唤醒中的应用。联邦学习能够有效利用各种用户的信息知识,提升所有用户的KWS(智能唤醒)使用体验,对于使用中心模型时表现糟糕的用户,联邦学习能够显著提升模型在这些用户上的性能,整个流程中数据不离开用户端侧,满足隐私保护的要求。
语音识别技术;“理解”需要自然语言处理技术;“回答”需要语音合成技术,三个步骤环环相扣,相辅相成。语音识别技术时对话交互的开端,时保证对话交互高效准确进行的基础。 语音识别技术子20世纪50年代开始步入萌芽阶段,发展至今,主流算法模型已经经历了四个阶段,包括模板匹配
容易收敛。在语音识别任务中,前期可以选择较小的批量块,比如64到256个样本,而后期换用较大的批量块,比如1024-8096个样本。学习率从梯度下降算法的角度来说,通过选择合适的学习率,可以使梯度下降法得到更好的性能。学习率,即参数到达最优值过程的速度快慢,当你学习率过大,即下降
容易收敛。在语音识别任务中,前期可以选择较小的批量块,比如64到256个样本,而后期换用较大的批量块,比如1024-8096个样本。学习率从梯度下降算法的角度来说,通过选择合适的学习率,可以使梯度下降法得到更好的性能。学习率,即参数到达最优值过程的速度快慢,当你学习率过大,即下降