检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
tion\":\"指标名称\"}],\"dimensions\":[{\"caption\":\"维度名称\"}],\"filters\":{\"query_filters\":[{\"value\":[\"值内容\"],\"caption\":\"度量名称\",\"relati
所在的文件夹。 评测数据集 创建数据集时,可以指定数据文件或者数据文件所在的文件夹。 基本信息 填写数据集名称与描述,选择行业、语言和数据标签。 图9 填写基本信息 参数填选完成后,单击“立即创建”。 创建好的数据集将显示在数据集列表中。 父主题: 准备盘古大模型训练数据集
选择训练数据集和配比类型,设置训练数据集配比,详情请参考数据配比功能介绍。 在训练数据集配比完成后,在单击“创建”或后续修改保存时,会对数据集的有效数据进行统计,确保满足模型训练的要求。 图3 数据配置 基本配置 填写训练数据集名称和描述,选择数据标签。 图4 基本配置 参数填选完成后,单击“立即创建”。
自监督训练: 不涉及 有监督微调: 该场景采用下表中的微调参数进行微调,您可以在平台中参考如下参数进行训练: 表2 问答模型的微调核心参数设置 训练参数 设置值 数据批量大小(batch_size) 4 训练轮数(epoch) 3 学习率(learning_rate) 3e-6 学习率衰
"company_name"。用户已经提供了公司名称"方欣科技有限公司",并指定了时间范围为今年1月。我将设置"report_type"为"经营异常风险检测",并将"skssqq"设置为"2024-01-01","skssqz"设置为"2024-01-31"。现在,我将调用工具。
识别的变量展示在变量定义区域,可以编辑变量名称便于理解。 图4 查看提示词变量 变量定义区域展示的是整个工程任务下定义的变量信息,候选提示词中关联的变量也会进行展示,候选词相关操作请参见设置候选提示词。 在模型区域单击“设置”,设置提示词输入的模型和模型参数。 图5 设置模型 同一个提示词工程中,定义的变量不能超过20个。
大模型是否可以自定义人设 大模型支持设置人设,在用户调用对话问答(chat/completions)API时,可以将“role”参数设置为system,让模型按预设的人设风格回答问题。例如,以下示例要求模型以幼儿园老师的风格回答问题。 { "messages": [
这种情况可能是由于以下原因导致的,建议您排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合或过拟合。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,根据实际情况调整训练参数,帮助模型更好学习。
横向比较提示词效果 将设置为候选的两个提示词横向比较,获取提示词的差异性和效果。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发 > 提示词工程”,进入提示词工程页面。 在工程任务列表页面,找到所需要操作的工程任务,单击该工程任务名称,跳转工程任务下候选提示词页面。 图1
在左侧导航栏中选择“数据工程 > 数据清洗”,单击界面右上角“创建任务”。 图1 数据清洗 依据需要清洗的数据类型,选择对应的数据集和数据集版本,输出路径,设置名称、描述等信息为可选项。 输出路径默认为系统生成,您也可以自定义输出路径,当前支持覆盖和追加两种方式。 覆盖:清洗后数据覆盖和替换原有数据集内容。
Studio大模型开发平台承载,它提供了包括盘古大模型在内的多种大模型服务,提供覆盖全生命周期的大模型工具链。 产品介绍 立即使用 在线体验 图说ECS 成长地图 由浅入深,带您玩转盘古大模型 01 了解 了解盘古大模型的概念、优势、应用场景以及模型能力与规格,您将更全面地掌握其强大功能,
量差,或学习率设置过大,使得模型在最优解附近震荡,甚至跳过最优解,导致无法收敛。您可以尝试提升数据质量或减小学习率来解决。 图4 异常的Loss曲线:上升 Loss曲线平缓,保持高位:Loss曲线平缓且保持高位不下降的原因可能是目标任务的难度较大,或模型的学习率设置过小,导致模型
properties配置文件;如果配置文件名不为llm.properties,需要在项目中主动设置,方法如下: 在resources路径下,创建llm.properties文件,并根据实际需要配置相应的值。 如果需要自定义配置文件名,可以参考以下代码设置。 // 建议在业务项目入口处配置 // 不需要添加.properties后缀
清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致过拟合,该现象会更加明显。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 推理参数设置:请检查推理参数中的“温度”或“核采样”等参数的设置,适当减小其中一个
属的问题,模型生成的结果不完整,出现了异常截断。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“最大Token限制”参数的设置,适当增加该参数的值,可以增大模型回答生成的长度,避免生成异常截断。请注意,该参数值存在上限,请结合目标任务的实际需要以及模型支持的长度限制来调整。
于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了过拟合。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 数据
因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合,模型没有学到任何知识。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当增大“训练轮次”的值,或根据实际
查看评估任务详情 查看评估任务详情 登录盘古大模型套件平台。 在左侧导航栏中选择“模型开发 > 模型评估”。 单击任务名称查看模型评估任务详情。包含基本信息、评估详情、评估报告、评估日志以及数据配置。 图1 任务详情界面 任务详情: 任务详情中包含打分模式、评估资源、评估模型、任务状态以及模型描述。
自监督训练: 不涉及 有监督微调: 本场景采用了下表中的微调参数进行微调,您可以在平台中参考如下参数进行训练: 表2 微调核心参数设置 训练参数 设置值 数据批量大小(batch_size) 8 训练轮数(epoch) 4 学习率(learning_rate) 7.5e-05 学
推理参数设置:请检查推理参数中的“话题重复度控制”或“温度”或“核采样”等参数的设置,适当增大其中一个参数的值,可以提升模型回答的多样性。 数据质量:请检查训练数据中是否存在文本重复的异常数据,可以通过规则进行清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而