检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
并提供特定模式下的算子自动融合功能,可提升在昇腾硬件后端上运行模型的性能。 AKG的配置也是在模型转换阶段进行配置(即执行converter_lite命令时),通过指定对应的配置文件akg.cfg,设置对应的akg优化级别,并且在模型转换时参考样例进行对应的配置。 # akg.cfg
String 训练作业的id,可通过创建训练作业生成的训练作业对象查询,如"job_instance.job_id",或从查询训练作业列表的响应中获得。 表2 get_job_log请求参数说明 参数 是否必选 参数类型 描述 task_id 否 String 要查看哪个工作节点的日志,默认
来源训练作业的版本,模型是从训练作业产生的可填写,用于溯源;如模型是从第三方元模型导入,则为空,默认值为空。 source_type 否 String 模型来源的类型,当前仅可取值auto,用于区分通过自动学习部署过来的模型(不提供模型下载功能);用户通过训练作业部署的模型不设置此值。默认值为空。
_eval.sh中的参数 模型存放的地方,如果根据第2步的方式保存的模型,设置如下: CKPT="llama-vid/llama-vid-7b-full-224-video-fps-1" 调用openai的key,评估精度时需要调用openai,需要填写正确的key,这个可能需要进行付费调用,评估1000条大概需要0
PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。 Ascend PyTorch
在开发环境(notebook)申请相同规格的开发环境实例。 在notebook调试用户代码,并找出问题的代码段。 通过关键代码段 + 退出码尝试去搜索引擎寻找解决办法。, 通过训练日志排查问题 通过日志判断出问题的代码范围。 修改代码,在问题代码段添加打印,输出更详细的日志信息。 再次运行作业,判断出问题的代码段。
如果没有挂载任何外部存储,此时可用存储空间根据dockerBaseSize的配置来决定,可访问的存储空间比较小,因此建议通过挂载外部存储空间解决存储空间受限问题。 容器中挂载存储有多种方式,不同的场景下推荐的存储方式不一样,详情如表1所示。容器存储的基础知识了解请参见存储基础知识,有助您理解本章节内容
在ModelArts控制台的总览页,支持查看生产概况(即总体作业运行数量)、资源占用情况、训练作业资源利用情况。您可以单击生产概况的链接、资源池名称、训练作业,跳转到对应界面查看更多详情。 图1 总览页查看监控信息 在总览页查看全部事件时,如果顶部事件总数和底部的“总条数”数量不一致,请刷新重试。
用更加了解。 确定自定义镜像大小 自定义镜像的大小推荐15GB以内,最大不要超过资源池的容器引擎空间大小的一半。镜像过大会直接影响训练作业的启动时间。 ModelArts公共资源池的容器引擎空间为50G,专属资源池的容器引擎空间的默认为50G,支持在创建专属资源池时自定义容器引擎空间。
Workflow中所有出现占位符相关的配置对象时,均需要设置默认值,或者直接使用固定的数据对象 方法的执行依赖于Workflow对象的名称:当该名称的工作流不存在时,则创建新工作流并创建新执行;当该名称的工作流已存在时,则更新存在的工作流并基于新的工作流结构创建新的执行 workflow.release_and_run()
间受限问题。容器中挂载存储有多种方式,不同的场景下推荐的存储方式不一样,您可根据业务实际情进行选择。 4 (可选)配置驱动 当专属资源池中的节点含有GPU/Ascend资源时,为确保GPU/Ascend资源能够正常使用,需要配置好对应的驱动。如果在购买资源池时,没配置自定义驱动,
SSE主要解决了客户端与服务器之间的单向实时通信需求(例如ChatGPT回答的流式输出),相较于WebSocket(双向实时),它更加轻量级且易于实现。 前提条件 在线服务中的模型导入选择的镜像需支持SSE协议。 约束与限制 SSE协议只支持部署在线服务。 只支持自定义镜像导入模型部署的在线服务。 调
PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。 Ascend PyTorch
件处理、数据库查询等,从而扩展其能力。 实时数据访问 由于大模型通常基于静态数据集训练,不具备实时信息。Function Calling允许模型访问最新的数据,提供更准确、更及时的回答。 提高准确性 在需要精确计算或特定领域知识时,大模型可以通过调用专门的函数来提高回答的准确性,
script可以保证这块GPU和NPU dump的数据对齐。 compare表中Cosine列第一个出现偏差的位置,为einsum算子的输入。 图8 Cosine列的偏差 查看堆栈信息发现是self.inv_freq的值存在精度偏差,再追溯到self.inv_freq的定义片段。 图9 inv_freq的定义片段 通
PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。 Ascend PyTorch
PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。 Ascend PyTorch
该案例是使用华为云一站式AI开发平台ModelArts的新版“自动学习”功能,基于华为云AI开发者社区AI Gallery中的数据集资产,让零AI基础的开发者完成“物体检测”的AI模型的训练和部署。依据开发者提供的标注数据及选择的场景,无需任何代码开发,自动生成满足用户精度要求的模型。可支持图片分类、物体检
查看ModelArts模型事件 创建模型的(从用户可看见创建模型任务开始)过程中,每一个关键事件点在系统后台均有记录,用户可随时在对应模型的详情页面进行查看。 方便用户更清楚的了解创建模型过程,遇到任务异常时,更加准确的排查定位问题。可查看的事件点包括: 事件类型 事件信息(“XXX”表示占位符,以实际返回信息为准)
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6