检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF16因其与FP32相似的数值范围和稳定性,在大模型训练中提供了优势。而FP16则在计算效率和内存使用方面有其独特的优点,但可能在数
速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF16因其与FP32相似的数值范围和稳定性,在大模型训练中提供了优势。而FP16则在计算效率和内存使用方面有其独特的优点,但可能在数
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6
如何删除ModelArts数据集中的图片? 登录ModelArts管理控制台,左侧菜单栏选择“数据管理>数据标注”,进入数据标注列表,单击需要删除图片的数据集,进入标注详情页。 在“全部”、“未标注”或“已标注”页面中,依次选中需要删除的图片,或者“选择当前页”选中该页面所有图片
速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF16因其与FP32相似的数值范围和稳定性,在大模型训练中提供了优势。而FP16则在计算效率和内存使用方面有其独特的优点,但可能在数
速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF16因其与FP32相似的数值范围和稳定性,在大模型训练中提供了优势。而FP16则在计算效率和内存使用方面有其独特的优点,但可能在数
本教程中用到的模型软件包如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.908-xxx.zip 说明: 软件包名称中的xxx表示时间戳。
本教程中用到的模型软件包如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.909-xxx.zip 说明: 软件包名称中的xxx表示时间戳。
示例值需要根据数据集${dataset}的不同,选择其一。 GeneralPretrainHandler:使用预训练的alpaca数据集。 GeneralInstructionHandler:使用微调的alpaca数据集。 MOSSInstructionHandler:使用微调的moss数据集 Al
Standard上运行GPU训练作业的场景介绍 不同AI模型训练所需要的数据量和算力不同,在训练时选择合适的存储及训练方案可提升模型训练效率与资源性价比。ModelArts Standard支持单机单卡、单机多卡和多机多卡的训练场景,满足不同AI模型训练的要求。 ModelArts S
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6
在训练作业列表中,单击目标训练作业名称,查看该作业的详情。 在左侧获取“输出位置”下的路径,即为训练模型的下载路径。 模型迁移到其他账号 您可以通过如下两种方式将训练的模型迁移到其他账号。 将训练好的模型下载至本地后,上传至目标账号对应区域的OBS桶中。 通过对模型存储的目标文件夹或者目标桶配置策略,
版本。当前一次的训练结果不满意时(如对训练精度不满意),您可以适当增加高质量的数据,或者增减标签,然后再次进行训练。 增量训练目前仅支持“图像分类”、“物体检测”、“声音分类”类型的自动学习项目。 为提升训练效果,建议在增量训练时,选择质量较高的数据,提升数据标注的质量。 增量训练的操作步骤
否 Environment实例 描述模型正常运行需要的环境,如使用的python版本、tensorflow版本等。 Environment实例的示例请参见示例代码。 source_job_id 否 String 来源训练作业的ID,模型是从训练作业产生的可填写,用于溯源;如模型是
w-1.8”的环境中使用pip安装Shapely。 打开一个Notebook实例,进入到Launcher界面。 在“Other”区域下,选择“Terminal”,新建一个terminal文件。 在代码输入栏输入以下命令,获取当前环境的kernel,并激活需要安装依赖的python环境。
在ModelArts的Notebook中内置引擎不满足使用需要时,如何自定义引擎IPython Kernel? 使用场景 当前Notebook默认内置的引擎环境不能满足用户诉求,用户可以新建一个conda env按需搭建自己的环境。本小节以搭建一个“python3.6.5和tensorflow1
本章节主要介绍针对LLaMAFactory开发的测试工具benchmark,支持训练、性能对比、下游任务评测、loss和下游任务对比能力。对比结果以excel文件呈现。方便用户验证发布模型的质量。所有配置都通过yaml文件设置,用户查看默认yaml文件即可知道最优性能的配置。 目前仅支持SFT指令监督微调训练阶段。
获取内容失败 原因分析 在创建训练作业时指定的代码目录不存在导致训练失败。 处理方法 请您根据报错原因排查创建训练作业时指定的代码目录,即OBS桶的路径是否正确。有两种方法判断是否存在。 使用当前账户登录OBS管理控制台,去查找对应的OBS桶、文件夹、文件是否存在。 通过接口判断
必须修改。用于指定模板。如果设置为"qwen",则使用Qwen模板进行训练,模板选择可参照表1中的template列 output_dir /home/ma-user/ws/Qwen2-72B/sft-4096 必须修改。指定输出目录。训练过程中生成的模型参数和日志文件将保存在这个目录下。用户根据自己实际要求适配。
必须修改。用于指定模板。如果设置为"qwen",则使用Qwen模板进行训练,模板选择可参照表1中的template列 output_dir /home/ma-user/ws/Qwen2-72B/sft-4096 必须修改。指定输出目录。训练过程中生成的模型参数和日志文件将保存在这个目录下。用户根据自己实际要求适配。