检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
盘古CV大模型能力与规格 盘古CV大模型基于海量图像、视频数据和盘古独特技术构筑的视觉基础模型,赋能行业客户利用少量场景数据对模型微调即可实现特定场景任务。 ModelArts Studio大模型开发平台为用户提供了多种规格的CV大模型,以满足不同场景和需求。以下是当前支持的模型
务需求收集相关的原始数据,确保数据的覆盖面和多样性。例如,若是自然语言处理任务,可能需要大量的文本数据;如果是计算机视觉任务,则需要图像或视频数据。 数据预处理:数据预处理是数据准备过程中的重要环节,旨在提高数据质量和适应模型的需求。常见的数据预处理操作包括: 去除重复数据:确保数据集中每条数据的唯一性。
构造请求 本节介绍REST API请求的组成,并以调用服务的获取用户Token接口说明如何调用API。 您还可以通过这个视频教程了解如何构造请求调用API:https://bbs.huaweicloud.com/videos/102987 。 请求示例如图1,一个请求主要由请求U
导入数据至盘古平台 加工图片、视频类数据集 对图片、视频类数据集进行加工,包括清洗、标注操作。 加工图片类数据集、加工视频类数据集 发布图片、视频类数据集 对图片、视频类数据集进行发布,包括评估、配比、流通操作。 发布图片类数据集、发布视频类数据集 开发盘古CV大模型 训练CV大模型
Token计算器 功能介绍 为了帮助用户更好地管理和优化Token消耗,平台提供了Token计算器工具。Token计算器可以帮助用户在模型推理前评估文本的Token数量,提供费用预估,并优化数据预处理策略。 URI POST /v1/{project_id}/deployment
从PDF(支持扫描版)或图片中提取文本,转化为结构化数据,持文本、表格、表单、公式等内容提取。 数据转换 个人数据脱敏 对文本中的手机号码、身份证件、邮箱地址、url链接、国内车牌号、IP地址、MAC地址、IMEI、护照、车架号等个人敏感信息进行数据脱敏,或直接删除敏感信息。 中文简繁转换 将中文简体和中文繁体进行转换。
择合适的标注方式。数据标注的质量直接影响模型的训练效果和精度。 发布数据集 评估数据集 平台预置了多种数据类型的基础评估标准,包括NLP、视频和图片数据,用户可根据需求选择预置标准或自定义评估标准,从而精确优化数据质量,确保数据满足高标准,提升模型性能。 配比数据集 数据配比是将
当前支持数据加工操作的数据集类型见表1。 表1 支持数据加工操作的数据集类型 数据类型 数据清洗 数据合成 数据标注 文本类 √ √ √ 图片类 √ - √ 视频类 √ - √ 气象类 √ - - 父主题: 加工数据集
本aa和bb、cls1样本aa和cls2的样本cc。 每个样本文件夹(如 aa)可以视为一个视频片段,其中每张图片代表视频的一个帧,将这些帧作为一个序列来学习视频分类,有助于模型学习视频的时序特征,从而进行准确的分类。 物体检测数据集标注文件说明 该说明适用于表1中的物体检测标注文件格式。
to+download+ERA5 高空变量数据下载链接:https://cds.climate.copernicus.eu/datasets,查找名称中包含ERA5和pressure levels的数据集。 表面变量数据下载链接:https://cds.climate.copernicus
无监督领域知识数据量无法支持增量预训练,如何进行模型学习 一般来说,建议采用增量预训练的方式让模型学习领域知识,但预训练对数据量的要求较大,如果您的无监督文档量级过小,达不到预训练要求,您可以通过一些手段将其转换为有监督数据,再将转换后的领域知识与目标任务数据混合,使用微调的方式让模型学习。
量直接影响模型的训练效果和精度。 标注文本类数据集 发布文本类数据集 评估文本类数据集 平台预置了多种数据类型的基础评估标准,包括NLP、视频和图片数据,用户可根据需求选择预置标准或自定义评估标准,从而精确优化数据质量,确保数据满足高标准,提升模型性能。 评估文本类数据集 配比文本类数据集
创建标注任务时如果指定了审核人员,则审核人员可以审核数据集,管理员(主账号)可以对所有数据集进行审核。 对于审核不合格的数据可以填写不合格原因并驳回给标注员重新标注。 审核视频类数据集标注结果的步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“数据工程
s”选项,找到并复制“X-Subject-Token”参数对应的值,该值即为需要获取的Token。 图4 获取Token 您还可以通过这个视频教程了解如何使用Token认证:https://bbs.huaweicloud.com/videos/101333 。 AppCode认证
搜索增强通过结合大语言模型与传统搜索引擎技术,提升了搜索结果的相关性、准确性和智能化。 例如,当用户提出复杂查询时,传统搜索引擎可能仅返回一系列相关链接,而大模型则能够理解问题的上下文,结合多个搜索结果生成简洁的答案,或提供更详细的解释,从而进一步改善用户的搜索体验。 温度 用于控制生成文
气象类清洗算子能力清单 数据加工算子为用户提供了多种数据操作能力,包括数据提取、过滤、转换、打标签等。这些算子能够帮助用户从海量数据中提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台支持气象类数据集的加工操作,气象类加工算子能力清单见表1。 表1 气象类清洗算子能力清单
基于NL2JSON助力金融精细化运营 场景介绍 在金融场景中,客户日常业务依赖大量报表数据来支持精细化运营,但手工定制开发往往耗费大量人力。因此,希望借助大模型消除语义歧义性,识别用户查询意图,并直接生成支持下游操作的结构化JSON信息。大模型的NL2JSON能力可以从自然语言输
NLP大模型训练流程与选择建议 NLP大模型训练流程介绍 NLP大模型的训练分为两个关键阶段:预训练和微调。 预训练阶段:在这一阶段,模型通过学习大规模通用数据集来掌握语言的基本模式和语义。这一过程为模型提供了处理各种语言任务的基础,如阅读理解、文本生成和情感分析,但它还未能针对特定任务进行优化。
使用盘古NLP大模型创建Python编码助手应用 场景描述 该示例演示了如何使用盘古NLP大模型创建Python编码助手执行应用,示例将使用Agent开发平台预置的Python解释器预置插件。 “Python解释器插件”能够执行用户输入的Python代码,并获取结果。此插件为应用
导入数据至盘古平台 数据集是一组用于处理和分析的相关数据样本。 用户将存储在OBS服务中的数据导入至ModelArts Studio大模型开发平台后,将生成“原始数据集”被平台统一管理,用于后续加工或发布操作。 创建导入任务 创建导入任务前,请先按照数据集格式要求提前准备数据。