检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
本章节介绍如何在Notebook使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。
模型自动转换评估工具Tailor 为了简化用户使用,ModelArts提供了Tailor工具,将模型转换、精度benchmark、性能benchmark和profiling采集工具集成到同一个工具中,极大简化了用户的使用流程。
使用AWQ量化工具转换权重 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表1。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化,量化方法为per-group。
使用AWQ量化工具转换权重 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化。
本章节介绍如何在Notebook使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。
本章节介绍如何在Notebook使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。
使用AWQ量化工具转换权重 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表1。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化。
使用llm-compressor工具量化 当前版本使用llm-compressor工具量化仅支持Deepseek-v2系列模型的W8A8量化。 本章节介绍如何在GPU的机器上使用开源量化工具llm-compressor量化模型权重,然后在NPU的机器上实现推理量化。
使用AWQ量化工具转换权重 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化。
图1 ModelArts与OBS交互示意 表1 ModelArts各模块与OBS的关系 功能 子任务 ModelArts与OBS的关系 Standard自动学习Standard Workflow 数据标注 ModelArts标注的数据存储在OBS中。
表1 ModelArts各环节与OBS的关系 功能 子任务 ModelArts与OBS的关系 自动学习 数据标注 ModelArts标注的数据存储在OBS中。 自动训练 训练作业结束后,其生成的模型存储在OBS中。
填写已有标注任务名称,则直接使用该标注任务;填写新标注任务名称,则自动创建新的标注任务") ), inputs=wf.steps.LabelingInput(name="labeling_input", data=data), outputs=wf.steps.LabelingOutput
同时您的工作流会自动从数据标注节点开始运行。您需要做的是: 观察数据标注节点,待数据标注节点变为橙色即为“等待操作”状态。双击数据标注节点,打开数据标注节点的运行详情页面,单击“继续运行”。 在弹出的窗口中,单击“确定”,工作流会开始继续运行。
同时您的工作流会自动从数据标注节点开始运行。您需要做的是: 观察数据标注节点,待数据标注节点变为橙色即为“等待操作”状态。双击数据标注节点,打开数据标注节点的运行详情页面,单击“继续运行”。 在弹出的窗口中,单击“确定”,工作流会开始继续运行。
填写已有标注任务名称,则直接使用该标注任务;填写新标注任务名称,则自动创建新的标注任务") ), inputs=wf.steps.LabelingInput(name="labeling_input", data=data), outputs=wf.steps.LabelingOutput
表1 ModelArts各环节与OBS的关系 功能 子任务 ModelArts与OBS的关系 自动学习 数据标注 ModelArts标注的数据存储在OBS中。 自动训练 训练作业结束后,其生成的模型存储在OBS中。
提交自动标注任务成功,等待自动标注任务完成 提交自动标注任务成功,等待自动标注任务完成 200 ModelArts.4916 Auto labeling task executed.
检查标注框是否符合要求(物体检测) 目前物体检测仅支持矩形标注框。请确保所有图片的标注框为矩形框。 如果使用非矩形框,可能存在以下报错: Error bandbox. 针对其他类型的项目(图像分类、声音分类等),无需关注此问题。
使用Advisor工具分析生成调优建议 关于Advisor使用及安装过程请参见昇腾社区Gitee。最后生成导出的各类场景的建议包含以下两种: Terminal日志信息的概览建议。 包含Detail信息及修改示例的HTML信息。
图像分类项目的工作流,将依次运行如下节点: 数据标注:对您的数据标注情况进行确认。 数据集版本发布:将已完成标注的数据进行版本发布。 数据校验:对您的数据集的数据进行校验,是否存在数据异常。 图像分类:将发布好的数据集版本进行训练,生成对应的模型。