检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
个子目录,避免相同样本重复导入。注:对表格数据集不可用。 import_origin 否 String 数据来源。可选值如下: obs:OBS桶(默认值) dws:GaussDB(DWS)服务 dli:DLI服务 rds:RDS服务 mrs:MRS服务 inference:推理服务
类型type、属性properties,必选属性required 、定义definitions等,JSON Schema通过定义对象属性、类型、格式的方式来引导模型生成一个包含用户信息的JSON对象。 如果希望使用JSON Schema,guided_json的写法可参考outlines: Structured
说明 path 否 String 存储路径。 如果type为“obs”类型,该值必须填写,该值需为有效的OBS桶路径,且以“/”结束。不能指定为OBS桶的根目录,需指定为OBS桶下的具体目录。 如果type为“obsfs”类型,该值需为有效的OBS并行文件系统的桶名(当前CCE不支持挂载子目录)。
代码上传至OBS 将llm_train文件上传至OBS中。 结合准备数据、准备权重、准备代码,将数据集、原始权重、代码文件都上传至OBS后,OBS桶的目录结构如下。 <bucket_name> |──llm_train # 解压代码包后自动生成的代码目录,无需用户创建
CogVideoX1.5 5b模型基于Lite Server适配PyTorch NPU全量训练指导(6.3.912) 本文档主要介绍如何在ModelArts的Lite Server环境中,使用NPU卡对CogVideoX模型进行全量微调。本文档中提供的脚本,是基于原生CogVid
任务 说明 准备工作 准备资源 本教程案例是基于ModelArts Standard运行的,需要购买并开通ModelArts专属资源池和OBS桶。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备权重 准备所需的权重文件。 准备代码 准备AscendSpeed训练代码。
handler-name参数说明 数据集预处理中 --handler-name 都会传递参数,用于构建实际处理数据的handler对象,并根据handler对象对数据集进行解析。文件路径在:ModelLink/modellink/data/data_handler.py。 基类BaseDatasetHandler解析
handler-name参数说明 数据集预处理中 --handler-name 都会传递参数,用于构建实际处理数据的handler对象,并根据handler对象对数据集进行解析。文件路径在:ModelLink/modellink/tasks/preprocess/data_handler
handler-name参数说明 数据集预处理中 --handler-name 都会传递参数,用于构建实际处理数据的handler对象,并根据handler对象对数据集进行解析。文件路径在:ModelLink/modellink/data/data_handler.py。 基类BaseDatasetHandler解析
handler-name参数说明 数据集预处理中 --handler-name 都会传递参数,用于构建实际处理数据的handler对象,并根据handler对象对数据集进行解析。文件路径在:ModelLink/modellink/data/data_handler.py。 基类BaseDatasetHandler解析
类型type、属性properties,必选属性required 、定义definitions等,JSON Schema通过定义对象属性、类型、格式的方式来引导模型生成一个包含用户信息的JSON对象。 若希望使用JSON Schema,guided_json的写法可参考outlines: Structured
类型type、属性properties,必选属性required 、定义definitions等,JSON Schema通过定义对象属性、类型、格式的方式来引导模型生成一个包含用户信息的JSON对象。 如果希望使用JSON Schema,guided_json的写法可参考outlines: Structured
Notebook的详细资料请查看Notebook使用场景介绍。 本案例中的训练作业需要通过SFS Turbo挂载盘的形式创建,因此需要将上述数据集、代码、权重文件从OBS桶上传至SFS Turbo中。 用户需要创建开发环境Notebook,并绑定SFS Turbo,以便能够通过Notebook访问SFS T
上传镜像完成后,返回容器镜像服务控制台,在“我的镜像”页面,执行刷新操作后可查看到对应的镜像信息。 上传数据至OBS 已经在OBS上创建好普通OBS桶,请参见创建普通OBS桶。 已经安装obsutil,请参考安装和配置OBS命令行工具。 OBS和训练容器间的数据传输原理可以参考基于ModelArts
验收结束后,针对不再使用的标注任务,您可单击任务所在行的删除。任务删除后,未验收的标注详情将丢失,请谨慎操作。但是数据集中的原始数据以及完成验收的标注数据仍然存储在对应的OBS桶中。 父主题: 通过团队标注方式标注数据
Wav2Lip训练基于Lite Server适配PyTorch NPU训练指导(6.3.907) 本文档主要介绍如何在ModelArts Lite的Lite Server环境中,使用NPU卡训练Wav2Lip模型。本文档中提供的Wav2Lip模型,是在原生Wav2Lip代码基础上适配后的模型,可以用于NPU芯片训练。
MiniCPM-V2.6基于Lite Server适配PyTorch NPU训练指导(6.3.912) 本文档主要介绍如何在ModelArts Lite的Server环境中,使用NPU卡对MiniCPM-V2.6进行LoRA微调及SFT微调。本文档中提供的训练脚本,是基于原生Mi
Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径obs://<bucket_name>llm_train/AscendFactory代码目录。 图1 创建训练作业 新的训练方式将统
选择训练代码文件所在的OBS目录。如果自定义镜像中不含训练代码则需要配置该参数,如果自定义镜像中已包含训练代码则不需要配置。 需要提前将代码上传至OBS桶中,目录内文件总大小要小于或等于5GB,文件数要小于或等于1000个,文件深度要小于或等于32。 训练代码文件会在训练作业启动的时候被系
类型type、属性properties,必选属性required 、定义definitions等,JSON Schema通过定义对象属性、类型、格式的方式来引导模型生成一个包含用户信息的JSON对象。 如果希望使用JSON Schema,guided_json的写法可参考outlines: Structured