检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
推理精度测试 本章节介绍如何进行推理精度测试,数据集是ceval_gen、mmlu_gen。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation目录中
使用PyCharm手动连接Notebook 本地IDE环境支持PyCharm和VS Code。通过简单配置,即可用本地IDE远程连接到ModelArts的Notebook开发环境中,调试和运行代码。 本章节介绍基于PyCharm环境访问Notebook的方式。 前提条件 本地已安装
使用AI Gallery SDK构建自定义模型 AI Gallery的Transformers库支持部分开源的模型结构框架,并对昇腾系列显卡进行了训练/推理性能优化,可以做到开箱即用。如果你有自己从头进行预训练的模型,AI Gallery也支持使用SDK构建自定义模型接入AI Gallery
CogVideoX训练推理基于DevServer适配PyTorch NPU指导(6.3.910) 本文档主要介绍如何在ModelArts Lite的DevServer环境中,使用NPU卡对CogVideoX进行LoRA微调及推理。本文档中提供的脚本,是基于原生CogVideoX的代码基础适配修改
使用预置镜像制作自定义镜像用于训练模型 使用预置框架构建自定义镜像原理介绍 如果先前基于预置框架且通过指定代码目录和启动文件的方式来创建的训练作业;但是随着业务逻辑的逐渐复杂,您期望可以基于预置框架修改或增加一些软件依赖的时候,可以使用预置框架构建自定义镜像,即在创建训练作业页面选择预置框架名称后
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Cluster上的训练方案。训练框架使用的是ModelLink。 本方案目前仅适用于企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Server上的预训练和全量微调方案。训练框架使用的是ModelLink。 本方案目前仅适用于部分企业客户,完成本方案的部署
使用MaaS压缩模型 在ModelArts Studio大模型即服务平台完成模型创建后,可以对模型进行压缩,获得更合适的模型。 场景描述 模型压缩是指将高比特浮点数映射到低比特量化空间,从而减少显存占用的资源,降低推理服务时延,提高推理服务吞吐量,并同时减少模型的精度损失。模型压缩适用于追求更高的推理服务性能
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优
推理精度测试 本章节介绍如何进行推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM
推理精度测试 本章节介绍如何进行推理精度测试,请在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation
JupyterLab常用功能介绍 JupyterLab视频介绍 JupyterLab主页介绍 下面介绍如何从运行中的Notebook实例打开JupyterLab。 登录ModelArts管理控制台,在左侧菜单栏中选择“开发空间 > Notebook”,进入Notebook页面。 选择状态为
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.908
SDXL ComfyUI插件基于DevServer适配PyTorch NPU推理指导(6.3.904) ComfyUI是一款基于节点工作流的Stable Diffusion操作界面。通过将Stable Diffusion的流程巧妙分解成各个节点,成功实现了工作流的精确定制和可靠复现
在DevServer上部署SD WebUI推理服务 本章节主要介绍如何在ModelArts的DevServer环境上部署Stable Diffusion的WebUI套件,使用NPU卡进行推理。 Step1 准备环境 请参考DevServer资源开通,购买DevServer资源,并确保机器已开通
SDXL&SD1.5 ComfyUI插件基于DevServer适配PyTorch NPU推理指导(6.3.906) ComfyUI是一款基于节点工作流的Stable Diffusion操作界面。通过将Stable Diffusion的流程巧妙分解成各个节点,成功实现了工作流的精确定制和可靠复现
创建生产训练作业 模型训练是一个不断迭代和优化模型权重的过程。ModelArts的训练模块支持创建训练作业、查看训练情况以及管理训练版本。通过模型训练试验模型结构、数据和超参的各种组合,便于找到最佳的模型结构和权重。 创建生产环境的训练作业有2种方式: 通过ModelArts Standard
ModelArts支持哪些AI框架? ModelArts的开发环境Notebook、训练作业、模型推理(即AI应用管理和部署上线)支持的AI框架及其版本,不同模块的呈现方式存在细微差异,各模块支持的AI框架请参见如下描述。 统一镜像列表 ModelArts提供了ARM+Ascend