检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
sh install.sh modellink; sh ./scripts_modellink/dev_pipeline.sh 使用ECS中构建新镜像构建的新镜像时,训练作业启动命令中输入: cd /home/ma-user/modelarts/user-job-dir/AscendFactory;
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令
部署服务 功能介绍 将模型部署为服务。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v1/{project_id}/services 表1 路径参数 参数
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6
#安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 相关文档 和本文档配套的模型训练文档请
sh; ascendfactory-cli train <cfgs_yaml_file> <model_name> <exp_name> 使用ECS中构建新镜像构建的新镜像时,训练作业启动命令中输入: cd /home/ma-user/modelarts/user-job-dir/AscendFactory;
建议把调试过程中的修改点通过Dockerfile固化到容器构建正式流程,并重新测试。 确认对应的脚本、代码、流程在linux服务器上运行正常。 如果在linux服务器上运行就有问题,那么先调通以后再做容器镜像。 确认打入镜像的文件是否在正确的位置、是否有正确的权限。 训练场景主要查看自研的依赖包是否正常,查看pip
from __future__ import print_function import os import gzip import codecs import argparse from typing import IO, Union import numpy as np import
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6
aarch64架构的主机,操作系统使用ubuntu-18.04。您可以准备相同规格的弹性云服务器ECS或者应用本地已有的主机进行自定义镜像的制作。 购买ECS服务器的具体操作请参考购买并登录Linux弹性云服务器。“CPU架构”选择“x86计算”,“镜像”选择“公共镜像”,推荐使用Ubuntu18
SSH:可以通过SSH协议远程连接Notebook。 key_pair_names 否 Array of strings SSH密钥对名称,可以在云服务器控制台(ECS)“密钥对”页面创建和查看。 表4 VolumeReq 参数 是否必选 参数类型 描述 capacity 否 Integer 存储
from __future__ import print_function import os import gzip import codecs import argparse from typing import IO, Union import numpy as np import
#安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 相关文档 和本文档配套的模型训练文档请
在线服务列表页面单击“名称/ID”,进入在线服务详情页面。 单击CloudShell页签,选择模型版本和计算节点,当连接状态变为时,即登录实例容器成功。 如果遇到异常情况服务器主动断开或超过10分钟未操作自动断开,此时可单击“重新连接”重新登录实例容器。 图5 CloudShell界面 部分用户登录Cloud S
方式二:使用Java语言发送预测请求 AK/SK签名认证方式,仅支持Body体12M以内,12M以上的请求,需使用Token认证。 客户端须注意本地时间与时钟服务器的同步,避免请求消息头X-Sdk-Date的值出现较大误差。因为API网关除了校验时间格式外,还会校验该时间值与网关收到请求的时间差,如果
├──install.sh #安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 ├──vllm_ppl.py #ppl精度测试脚本
即可完成模型训练和部署。 当前自动学习支持快速创建图像分类、物体检测、预测分析、声音分类和文本分类模型的定制化开发。可广泛应用在工业、零售安防等领域。 图像分类:识别图片中物体的类别。 物体检测:识别出图片中每个物体的位置和类别。 预测分析:对结构化数据做出分类或数值预测。 声音分类:对环境中不同声音进行分类识别。
LLaVA-NeXT基于DevServer适配PyTorch NPU训练微调指导(6.3.912) 方案概览 本方案介绍了在ModelArts Lite DevServer上使用昇腾计算资源Ascend Snt9B开展LLaVA-NeXT模型的训练过程,包括pretrain_cl