检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ab/pile-val-backup/resolve/main/val.jsonl.zst,注意需指定到val.jsonl的上一级目录。 详细说明可以参考vLLM官网:https://docs.vllm.ai/en/latest/quantization/auto_awq.html。
地容器镜像构建操作。 不建议在容器内再创建多个conda env。因为容器已经能满足隔离需求,没有必要再通过conda env做隔离。 本教程通过打包conda env来构建环境,也可以通过pip install、conda install等方式安装conda环境的依赖。 更多M
USE_MM_ALL_REDUCE_OP 配置后重启推理服务生效。 查看详细日志 查看详细耗时日志可以辅助定位性能瓶颈,但会影响推理性能。如需开启,配置以下环境变量。 export DETAIL_TIME_LOG=1 export RAY_DEDUP_LOGS=0 关闭详细日志命令: unset DETAIL_TIME_LOG
gface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val.jsonl的上一级目录。 详细说明可以参考vLLM官网:https://docs.vllm.ai/en/latest/quantization/auto_awq.html。
说明: 需要为消息通知服务中创建的主题添加订阅,当订阅状态为“已确认”后,方可收到事件通知。订阅主题的详细操作请参见添加订阅。 使用消息通知服务会产生相关服务费用,详细信息请参见计费说明。 自动停止 当使用付费资源时,可以选择是否打开“自动停止”开关。 开关关闭(默认关闭):表示任务将一直运行。
数据无法恢复。 图1 按需计费资源生命周期 华为云根据客户等级定义了不同客户的宽限期和保留期时长。 避免和处理欠费 欠费后需要及时充值,详细操作请参见账户充值。 如果确认不再使用ModelArts服务,需在ModelArts管理控制台总览页确认会收费的实例已全部停止或删除,同时
择已有的标签,然后单击“添加”完成标注。逐步此画面中所有物体所在位置,一帧对应的画面可添加多个标签。 支持的标注框与“物体检测”类型一致,详细描述请参见物体检测章节的表2。 图2 视频标注 上一帧对应的画面标注完成后,在进度条处单击播放按钮继续播放,在需要标注处暂停,然后重复执行步骤3完成整个视频的标注。
ASCEND_RT_VISIBLE_DEVICES=0 #设置使用NPU单卡执行模型量化 python examples/quantize.py 详细说明可以参考vLLM官网:https://docs.vllm.ai/en/latest/quantization/auto_awq.html。
tps://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 执行如下脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama#int8-kv-cache)
tps://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 执行如下脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama#int8-kv-cache)
ASCEND_RT_VISIBLE_DEVICES=0 #设置使用NPU单卡执行模型量化 python examples/quantize.py 详细说明可以参考vLLM官网:https://docs.vllm.ai/en/latest/quantization/auto_awq.html。
tps://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 执行如下脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama#int8-kv-cache)
s/llama/convert_checkpoint.py。 执行convert_checkpoint.py脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama#int8-kv-cache。
tps://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 执行如下脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama#int8-kv-cache)
job_id Long 可视化作业的ID。 job_name String 可视化作业的名称 status Integer 可视化作业的运行状态,详细作业状态列表请参见作业状态参考。 create_time Long 可视化作业的创建时间,时间戳格式。 service_url String
parallel size)张量模型并行策略,推荐使用PP(pipeline model parallel size)流水线模型并行策略,具体详细参数配置如表2所示。 Step2 创建LoRA微调训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上
s/llama/convert_checkpoint.py。 执行convert_checkpoint.py脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama#int8-kv-cache。
方向规则中没有包含ICMP协议,就会出现ping不通的问题。 处理方法 在当前安全组的入方向规则中添加一条规则,基本协议选择ICMP协议,详细配置如下表所示,添加规则步骤请参考添加安全组规则。 表1 入方向规则 方向 协议/应用 端口 源地址 入方向 ICMP 全部 0.0.0.0/0
s/llama/convert_checkpoint.py。 执行convert_checkpoint.py脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama#int8-kv-cache。
gface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val.jsonl的上一级目录。 详细说明可以参考vLLM官网:https://docs.vllm.ai/en/latest/quantization/auto_awq.html。