检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
5-7B指令监督式微调。 全参训练(Full):这种策略主要对整个模型进行微调。这意味着在任务过程中,除了输出层外,模型的所有参数都将被调整以适应新的任务。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。 约束限制 本文档适配昇腾云ModelArts
peat=2,则会再次重复一次采集过程,那么实际会二次采集step21-step23这三个连续step的profiling数据并保存至一个新的json文件中。 图1 torch_npu.profiler.profile 图2 torch_npu.profiler.profile schedule参数释义
导出数据集版本的名称。 export_dest String 数据集导出类型。可选值如下: DIR:导出到OBS(默认值) NEW_DATASET:导出到新数据集 export_new_dataset_name String 导出新数据集的名称。 export_new_dataset_work_path
5-7B指令监督式微调。 全参训练(Full):这种策略主要对整个模型进行微调。这意味着在任务过程中,除了输出层外,模型的所有参数都将被调整以适应新的任务。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。 约束限制 本文档适配昇腾云ModelArts
5-7B指令监督式微调。 全参训练(Full):这种策略主要对整个模型进行微调。这意味着在任务过程中,除了输出层外,模型的所有参数都将被调整以适应新的任务。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。 约束限制 本文档适配昇腾云ModelArts
conversation_id: 指定的对话id, 如果相同, 转换后就放在同一conversation_id的不同turn_X下。如果为空,则放在新的conversation_id下。 Human: 数据集中每条数据的输入。 assistant: 数据集中每条数据的输出。 运行命令示例:
${container_name}:容器名称,进入容器时会用到,此处可以自己定义一个容器名称。 {image_id} 为docker镜像的ID,即第四步中生成的新镜像id,在宿主机上可通过docker images查询得到。 步骤六:进入容器 进入容器。 docker exec -it -u ma-user
在标注页面的工具栏中选择合适的标注工具,本示例使用矩形框进行标注。 图6 标注工具 使用标注工具选中目标区域,在弹出的标签文本框中,直接输入新的标签名。如果已存在标签,从下拉列表中选择已有的标签。单击“添加”完成标注。 图7 添加物体检测标签 单击页面上方“返回数据标注预览”查看标
此功能与直接基于预置框架创建算法的区别仅在于,镜像是由用户自行选择的。用户可以基于预置框架制作自定义镜像。基于预置框架制作自定义镜像可参考使用基础镜像构建新的训练镜像章节。 完全自定义镜像: 订阅算法和预置框架涵盖了大部分的训练场景。针对特殊场景,ModelArts支持用户构建自定义镜像用于模型
conversation_id: 指定的对话id, 如果相同, 转换后就放在同一conversation_id的不同turn_X下。如果为空,则放在新的conversation_id下。 Human: 数据集中每条数据的输入。 assistant: 数据集中每条数据的输出。 运行命令示例:
conversation_id: 指定的对话id, 如果相同, 转换后就放在同一conversation_id的不同turn_X下。如果为空,则放在新的conversation_id下。 Human: 数据集中每条数据的输入。 assistant: 数据集中每条数据的输出。 运行命令示例:
数据集发布成功后,发布者可以进入数据集的详情页修改该数据集“描述”、“版本”和“限制”等信息。 修改封面图和二级标题 在发布的资产详情页面,单击右侧的“编辑”,选择上传新的封面图,为资产编辑独特的主副标题。 编辑完成之后单击“保存”。封面图和二级标题内容自动同步,您可以直接在资产详情页查看修改结果。 图3 修改封面图和二级标题
--datasets mmlu_gen ceval_gen -w ${output_path} output_path: 要保存的结果路径。 (可选)创建新conda环境,安装vllm和opencompass。执行完之后,在 opencompass/configs/models/vllm/vllm_ppl
conversation_id: 指定的对话id, 如果相同, 转换后就放在同一conversation_id的不同turn_X下。如果为空,则放在新的conversation_id下。 Human: 数据集中每条数据的输入。 assistant: 数据集中每条数据的输出。 运行命令示例:
mmlu_gen ceval_gen --debug -w ${output_path} output_path: 要保存的结果路径。 (可选)创建新conda环境,安装vllm和opencompass。执行完之后,在 opencompass/configs/models/vllm/vllm_ppl
conversation_id: 指定的对话id, 如果相同, 转换后就放在同一conversation_id的不同turn_X下。如果为空,则放在新的conversation_id下。 Human: 数据集中每条数据的输入。 assistant: 数据集中每条数据的输出。 运行命令示例:
\"/home/mind/model/run_vllm.sh\": permission denied",请参考附录:大模型推理standard常见问题问题6重新构建镜像。 Step4 调用在线服务 进入在线服务详情页面,选择“预测”。 若以vllm接口启动服务,设置请求路径:“/generate”,输入预测代码“{"prompt":
conversation_id: 指定的对话id, 如果相同, 转换后就放在同一conversation_id的不同turn_X下。如果为空,则放在新的conversation_id下。 Human: 数据集中每条数据的输入。 assistant: 数据集中每条数据的输出。 运行命令示例:
Shell登录训练容器,且训练作业必须处于“运行中”状态。 在训练管理的“创建算法”页面,来源于AI Gallery中订阅的算法不支持另存为新算法。 训练作业卡死检测目前仅支持资源类型为GPU的训练作业。 仅使用新版专属资源池训练时才支持设置训练作业优先级。公共资源池和旧版专属资源池均不支持设置训练作业优先级。
conversation_id: 指定的对话id, 如果相同, 转换后就放在同一conversation_id的不同turn_X下。如果为空,则放在新的conversation_id下。 Human: 数据集中每条数据的输入。 assistant: 数据集中每条数据的输出。 运行命令示例: