检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Step3 权重格式离线转换(可选) AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本:
业务场景 依赖的服务 委托授权项 说明 在线服务 LTS lts:groups:create lts:groups:list lts:topics:create lts:topics:delete lts:topics:list 建议配置,在线服务配置LTS日志上报。 批量服务 OBS
gz 也可以从HuggingFace官网下载到本地后,通过docker cp命令复制到容器中/home/ma-user目录下,如下图所示。 在线下载地址: https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/tree/main
String 内置属性:标签级别难例原因。通过中划线间隔单个难例原因ID,例如:“3-20-21-19”。难例原因ID可选值如下: 0:未识别出任何目标物体。 1:置信度偏低。 2:基于训练数据集的聚类结果和预测结果不一致。 3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。
String 内置属性:标签级别难例原因。通过中划线间隔单个难例原因ID,例如:“3-20-21-19”。难例原因ID可选值如下: 0:未识别出任何目标物体。 1:置信度偏低。 2:基于训练数据集的聚类结果和预测结果不一致。 3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。
String 内置属性:标签级别难例原因。通过中划线间隔单个难例原因ID,例如:“3-20-21-19”。难例原因ID可选值如下: 0:未识别出任何目标物体。 1:置信度偏低。 2:基于训练数据集的聚类结果和预测结果不一致。 3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。
dataset:数据集 obs:OBS swr:SWR model_list:AI应用列表 label_task:标注任务 service:在线服务 conditions 否 Array of Constraint objects 数据约束条件。 value 否 Map<String
常量折叠是编译器优化中的通用技术之一,在编译节点简化常量表达。通过多数的现代编译器不会真的产生两个乘法的指令再将结果存储下来,取而代之的是会识别出语句的结构,并在编译时期将数值计算出来而不是运行时去计算(在本例子,结果为2,048,000)。 i = 320 * 200 * 32;
dataset:数据集 obs:OBS swr:SWR model_list:AI应用列表 label_task:标注任务 service:在线服务 conditions 否 Array of Constraint objects 数据约束条件。 value 否 Map<String
String 内置属性:标签级别难例原因。通过中划线间隔单个难例原因ID,例如:“3-20-21-19”。难例原因ID可选值如下: 0:未识别出任何目标物体。 1:置信度偏低。 2:基于训练数据集的聚类结果和预测结果不一致。 3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。
String 内置属性:标签级别难例原因。通过中划线间隔单个难例原因ID,例如:“3-20-21-19”。难例原因ID可选值如下: 0:未识别出任何目标物体。 1:置信度偏低。 2:基于训练数据集的聚类结果和预测结果不一致。 3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。
测试推理服务:工作流运行完成后,在服务部署节点右侧单击“实例详情”跳转至推理服务详情页。或者在ModelArts管理控制台,选择“部署上线>在线服务”,找到部署的推理服务,单击服务名称,进入服务详情页。单击“预测”,右边可查看预测结果。 图6 预测样例图 图7 预测结果 父主题: 使用Workflow实现低代码AI开发
越大,生成文本的多样性就越高。 1 top_k 选择在模型的输出结果中选择概率最高的前K个结果。 20 在对话框中输入问题,查看返回结果,在线体验对话问答。 图8 体验模型服务 后续操作 如果不再需要使用此模型服务,建议清除相关资源,避免产生不必要的费用。 在MaaS服务的“模型
若需要部署量化模型,需在Notebook中进行模型权重转换后再部署推理服务。 在推理生产环境中部署推理服务 介绍如何创建AI应用,部署模型并启动推理服务,在线预测服务。 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.907)
dataset:数据集 obs:OBS swr:SWR model_list:AI应用列表 label_task:标注任务 service:在线服务 conditions 否 Array of Constraint objects 数据约束条件。 value 否 Map<String
SSH:镜像支持本地IDE通过SSH协议远程连接Notebook。 id String 待创建Notebook实例的镜像,需要指定镜像ID,ID格式为通用唯一识别码(Universally Unique Identifier,简称UUID)。预置镜像的ID参考查询支持的镜像列表获取。 name String
SSH:镜像支持本地IDE通过SSH协议远程连接Notebook。 id String 待创建Notebook实例的镜像,需要指定镜像ID,ID格式为通用唯一识别码(Universally Unique Identifier,简称UUID)。预置镜像的ID参考查询支持的镜像列表获取。 name String
SSH:镜像支持本地IDE通过SSH协议远程连接Notebook。 id String 待创建Notebook实例的镜像,需要指定镜像ID,ID格式为通用唯一识别码(Universally Unique Identifier,简称UUID)。预置镜像的ID参考查询支持的镜像列表获取。 name String
https://gitee.com/mindspore/models.git -b v1.5.0 图2 下载后的模型包文件 下载花卉识别数据集。 本样例使用的数据集为类别数为五类的花卉识别数据集。 在Terminal里执行如下命令下载并解压数据集,将数据集保存在“./models/dataset/flower_photos”文件夹。
String 内置属性:标签级别难例原因。通过中划线间隔单个难例原因ID,例如:“3-20-21-19”。难例原因ID可选值如下: 0:未识别出任何目标物体。 1:置信度偏低。 2:基于训练数据集的聚类结果和预测结果不一致。 3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。