检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Pro提供热轧钢板表面缺陷检测工作流,提供高精度钢板表面缺陷识别算法,提高钢板表面缺陷检测场景上线效率。 功能介绍 支持自主上传热轧钢板表面图片数据,构建热轧钢板表面缺陷类型的检测模型,用于识别热轧钢板表面图片中的缺陷类型。 适用场景 钢铁制造。 优势 模型精度高,识别速度快;更新模型简便。 云状识别工作流 观察云
SKU后,自动标注数据。 选择数据 创建SKU(可选) 在商品识别场景下,如果上传的数据包含未标注数据,您需要创建SKU,即商品各类单品的图片,方便后续针对数据集中的数据进行自动标注。 如果数据集是已标注数据,您可以选择不创建SKU,直接执行下一步。 创建SKU 标注数据 针对已
监控应用 在线部署的应用,您可以在开发并部署服务后监控应用,包括应用的基本信息、在线测试应用、查看应用历史版本、查看应用的调用指南。 前提条件 已开发并部署服务,详情请见部署服务。 进入应用监控页面 登录ModelArts Pro管理控制台,单击“视觉套件”卡片的“进入套件”。 进入视觉套件控制台。
检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 如果分割效果不好,建议检测图片标注,标注质量的好坏直接影响模型训练图像分割效果的好坏。
当前HiLens套件提供HiLens安全帽检测技能,支持自主上传图片数据,构建高精度安全帽检测模型,快速开发安全帽检测技能,实现园区自动检测工人未戴安全帽的行为。 功能介绍 面向智慧园区的安全帽检测技能,支持自主上传图片数据,构建高精度安全帽检测模型,快速开发安全帽检测技能,实现园区自动检测工人未戴安全帽的行为。
图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。
目前ModelArts Pro开放了文字识别套件、自然语言处理套件、视觉套件和HiLens套件,其中,文字识别套件、自然语言处理套件和视觉套件已商用,HiLens条件处于公测阶段。各个套件的计费项和计费模式如下: 文字识别套件 自然语言处理套件 视觉套件 HiLens套件 文字识别套件 计费项 按API调用次数按需计费。
目前ModelArts Pro开放了文字识别套件、自然语言处理套件、视觉套件和HiLens套件,其中,文字识别套件、自然语言处理套件和视觉套件已商用,HiLens条件处于公测阶段。各个套件的计费项和计费模式如下: 文字识别套件 自然语言处理套件 视觉套件 HiLens套件 文字识别套件 计费项 按API调用次数按需计费。
图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。
图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。
图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。
图2 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。
一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选择“云状识别工作流”新建应用,并训练模型,详情请见训练模型。 评估模型 在“模型评估”页面,您可以针对当前版本的模型进行模型评估,查看评估参数对比和详细评估,也可以模拟在线测试。
一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选择“零售商品识别工作流”新建应用,并训练模型,详情请见训练模型。 评估模型 在“模型评估”页面,您可以针对当前版本的模型进行模型评估,查看评估参数对比和详细评估,也可以模拟在线测试。
一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选择“刹车盘识别工作流”新建应用,并训练模型,详情请见训练模型。 评估模型 在“模型评估”页面,您可以针对当前版本的模型进行模型评估,查看评估参数对比和详细评估,也可以模拟在线测试。
图2 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。
已创建用于存储数据的OBS桶及文件夹,且数据存储的OBS桶与ModelArts Pro在同一区域,详情请见创建OBS桶。 已在ModelArts Pro控制台选择“HiLens安全帽检测”可训练模板新建技能,并选择训练数据集,详情请见选择数据。 训练模型 在“应用开发>模型训练”页面,配置训练参数,开始训练模型。
一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选择“热轧钢板表面缺陷检测工作流”新建应用,并训练模型,详情请见训练模型。 评估模型 在“模型评估”页面,您可以针对当前版本的模型进行模型评估,查看评估参数对比和详细评估,也可以模拟在线测试。
模型准备完成后,您可以部署服务,开发属于自己的文本分类应用,此应用用于分类自己所上传的文字内容,也可直接调用对应的API。 前提条件 已在自然语言处理套件控制台选择“通用文本分类工作流”新建应用,并评估模型,详情请见评估模型。 由于部署服务涉及ModelArts功能,需消耗资源,要确保账户未欠费。
一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选择“无监督车牌检测工作流”新建应用,并训练模型,详情请见训练模型。 评估模型 在“模型评估”页面,您可以针对当前版本的模型进行模型评估,查看评估参数对比和详细评估,也可以模拟在线测试。