检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在“模型部署”页面,单击“我的服务”页签。 在目标模型服务右侧,单击操作列的“更多 > 服务升级”。 在“服务升级”页面,配置升级参数。 “模型设置”:选择原模型下的其他模型版本。 其他参数不可修改,但可以了解原模型服务的配置。 配置完成后,单击“提交”启动服务升级。 父主题: 管理我的服务
CPU架构的自定义镜像分别只能运行于对应CPU架构的规格中。 执行如下命令,查看自定义镜像的CPU架构。 docker inspect {自定义镜像地址} | grep Architecture ARM CPU架构的自定义镜像,上述命令回显如下。 "Architecture": "arm64"
效。在提交修改服务任务时,如果涉及重启,会有弹窗提醒。 在线服务参数说明请参见部署模型为在线服务。修改在线服务还需要配置“最大无效实例数”设置并行升级的最大节点数,升级阶段节点无效。 修改在线服务参数时,可通过增加一个自定义的环境变量参数,触发服务重启。例如,如果服务原来部署在公
modify_content 发布资产新版本 ModelArts_Market add_version 订阅资产 ModelArts_Market subscription_content 收藏资产 ModelArts_Market star_content 取消收藏资产 ModelArts_Market
在ModelArts Studio左侧导航栏中,选择“模型部署”。 在“模型部署”页面,单击“我的服务”页签。 在目标模型服务右侧,单击操作列的“更多 > 设置QPS”,在弹窗中修改数值,单击“提交”启动修改任务。 图1 修改QPS 在“我的服务”页签,单击服务名称,进入服务详情页,可以查看修改后的QPS是否生效。
验证准确度与CPU/GPU差异不符合预期。 在迁移到NPU环境下训练发现以上问题时,说明精度可能存在偏差,需要进一步做精度调优。下文将分别阐述精度诊断的整体思路和如何借助精度工具进行精度问题的定位。 父主题: PyTorch迁移精度调优
5之间的整数。 是否自动停止:启用该参数并设置时间后,服务将在指定时间后自动停止。如果不启用此参数,在线服务将一直运行,同时一直收费,自动停止功能可以帮您避免产生不必要的费用。默认开启自动停止功能,且默认值为“1小时后”。 目前支持设置为“1小时后”、“2小时后”、“4小时后”、
5之间的整数。 是否自动停止:启用该参数并设置时间后,服务将在指定时间后自动停止。如果不启用此参数,在线服务将一直运行,同时一直收费,自动停止功能可以帮您避免产生不必要的费用。默认开启自动停止功能,且默认值为“1小时后”。 目前支持设置为“1小时后”、“2小时后”、“4小时后”、
5之间的整数。 是否自动停止:启用该参数并设置时间后,服务将在指定时间后自动停止。如果不启用此参数,在线服务将一直运行,同时一直收费,自动停止功能可以帮您避免产生不必要的费用。默认开启自动停止功能,且默认值为“1小时后”。 目前支持设置为“1小时后”、“2小时后”、“4小时后”、
String API的认证方式。枚举值如下: NONE:无认证 APP:APP认证 IAM:IAM认证 predict_url String 预测地址。 service_id String 服务编号。 service_name String 服务名称。 support_app_code Boolean
5之间的整数。 是否自动停止:启用该参数并设置时间后,服务将在指定时间后自动停止。如果不启用此参数,在线服务将一直运行,同时一直收费,自动停止功能可以帮您避免产生不必要的费用。默认开启自动停止功能,且默认值为“1小时后”。 目前支持设置为“1小时后”、“2小时后”、“4小时后”、
5之间的整数。 是否自动停止:启用该参数并设置时间后,服务将在指定时间后自动停止。如果不启用此参数,在线服务将一直运行,同时一直收费,自动停止功能可以帮您避免产生不必要的费用。默认开启自动停止功能,且默认值为“1小时后”。 目前支持设置为“1小时后”、“2小时后”、“4小时后”、
任务的历史记录,了解任务状态。 查看自动分组结果 在数据集详情页面的“全部”页签中,展开“筛选条件”,将“样本属性”设置为自动分组任务中的“属性名称”,并通过设置样本属性值,筛选出分组结果。 图2 查看自动分组结果 查看自动分组的历史任务 在数据集详情页面的“全部”页签中,单击“自动分组
220 221 222 223 224 225 from __future__ import print_function import gzip import os import urllib import numpy import tensorflow as tf from six
具体如表1所示。 表1 支持的模型列表和权重获取地址 序号 模型名称 是否支持fp16/bf16推理 是否支持W4A16量化 是否支持W8A8量化 是否支持W8A16量化 是否支持 kv-cache-int8量化 开源权重获取地址 1 llama-7b √ √ √ √ √ https://huggingface
在弹窗中,从“我创建的”或“我收藏的”数据集中选择所需要数据集。 选择完成后,单击“确定”。 数据准备完成后,单击“下一步”进入“作业设置”环节。 设置并启动作业 在微调工作流的“作业设置”环节配置训练作业参数。 算法配置,会显示已选模型的信息,基于已选模型选择微调方式。 当“训练任务类型”是“文本问答”或“文本生成”时,AI
支持管理托管的资产文件,例如在线预览、下载、删除文件。 只支持预览大小不超过10MB、格式为文本类或图片类的文件。 支持编辑资产介绍。每个资产介绍可分为基础设置和使用描述。 基础设置部分包含了该资产所有重要的结构化元数据信息。选择填入的信息将会变成该模型资产的标签,并且自动同步在模型描述部分,保存到“README
工作空间配额数据。 表4 WorkspaceQuotasResponse 参数 参数类型 描述 max_quota Integer 配额允许设置的最大值。 update_time Integer 最后修改时间,UTC。如用户未修改过该资源配额,则该值默认为该工作空间的创建时间。 resource
工作空间配额数据。 表6 WorkspaceQuotasUpdateResponse 参数 参数类型 描述 max_quota Integer 配额允许设置的最大值。 update_time Integer 最后修改时间,UTC。如用户未修改过该资源配额,则该值默认为该工作空间的创建时间。 resource
用途,可选值为TRAIN、EVAL、TEST、INFERENCE。指明该对象用于训练、评估、测试、推理,如果没有给出该字段,则使用者自行决定如何使用该对象。 inference_loc String 当此Manifest文件由推理服务生成时会有该字段,表示推理输出的结果文件位置。 id