检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
3.912版本,请参考表1获取配套版本的软件包和镜像,请严格遵照版本配套关系使用本文档。 确保容器可以访问公网。 资源规格要求 推荐使用“西南-贵阳一”Region上的Server资源和Ascend Snt9B。 软件配套版本 表1 获取软件 分类 名称 获取路径 插件代码包 AscendCloud-6
查看nv_peer_mem是否已安装。 dpkg -i | grep peer 如果未安装则需要安装,安装方法参考装机指导。 如果已安装则进入下一检测项。 查看该软件是否已经加载至内核。 lsmod | grep peer 如果没有则需要重新加载至内核,执行如下命令进行加载: /etc/init.d/nv_peer_mem
使用ModelArts Standard一键完成商超商品识别模型部署 ModelArts的AI Gallery中提供了大量免费的模型供用户一键部署,进行AI体验学习。 本文以“商超商品识别”模型为例,完成从AI Gallery订阅模型,到ModelArts一键部署为在线服务的免费体验过程。
X86/ARM,自有软件是否支持ARM。 例如:4个推理模型在ARM上运行,6个推理模型在X86上运行。 - 当前使用的操作系统及版本 当前推理业务的操作系统及版本,如:Ubuntu 22.04。 是否使用容器化运行业务,以及容器中OS版本,HostOS中是否有业务软件以及HostOS的类型和版本。
| grep nvidia-fabricmanager # 如果有nvidia-fabricmanager软件,将其卸载 # 如果无nvidia-fabricmanager软件,请跳过此命令 sudo apt-get autoremove --purge nvidia-fabricmanager-版本
CANN cann_8.0.rc3 驱动 24.1.rc1 PyTorch 2.1.0 获取软件和镜像 表2 获取软件和镜像 分类 名称 获取路径 插件代码包 AscendCloud-6.3.912软件包中的AscendCloud-AIGC-6.3.912-xxx.zip 文件名中的xx
名称 版本 driver 23.0.6 PyTorch pytorch_2.1.0 获取软件和镜像 表2 获取软件和镜像 分类 名称 获取路径 插件代码包 AscendCloud-6.3.912软件包中的AscendCloud-AIGC-6.3.912-xxx.zip 获取路径:Su
907版本,请参考表1获取配套版本的软件包和镜像,请严格遵照版本配套关系使用本文档。 确保容器可以访问公网。 资源规格要求 推荐使用“西南-贵阳一”Region上的Lite Server资源和Ascend Snt9B。 软件配套版本 表1 获取软件 分类 名称 获取路径 插件代码包
driver 23.0.6 PyTorch pytorch_2.1.0 获取软件和镜像 表2 获取软件和镜像 分类 名称 获取路径 插件代码包 AscendCloud-6.3.907-xxx.zip软件包中的AscendCloud-AIGC-6.3.907-xxx.zip 说明:
8.0.RC3 MindSpore Lite 2.3.0 OS arm 获取软件和镜像 表2 获取软件和镜像 分类 名称 获取路径 插件代码包 AscendCloud-6.3.910-xxx.zip软件包中的AscendCloud-CV-6.3.910-xxx.zip 说明: 包
“验证集比例”等于1。 “训练集比例”即用于训练模型的样本数据比例;“验证集比例”即用于验证模型的样本数据比例。“训练验证比例”会影响训练模板的性能。 父主题: Standard数据准备
数据来源列表,与data_source二选一。 name 是 String 数据处理任务名称。 template 否 TemplateParam object 数据处理模板,如算法ID和参数等。 version_id 否 String 数据集版本ID。 work_path 否 WorkPath object 数据处理任务的工作目录。
检查NPU的软件和固件信息..." npu_smi_output=$(npu-smi info -t board -i 1 | egrep -i "software|firmware") if [ $? -ne 0 ]; then echo "检查NPU软件和固件信息失败,退出脚本。"
推理性能测试 本章节介绍如何进行推理性能测试,建议在Notebook的JupyterLab中另起一个Terminal,执行benchmark脚本进行性能测试。若需要在生产环境中进行推理性能测试,请通过调用接口的方式进行测试。 约束限制 创建在线服务时,每秒服务流量限制默认为100
推理性能测试 本章节介绍如何进行推理性能测试,建议在Notebook的JupyterLab中另起一个Terminal,执行benchmark脚本进行性能测试。若需要在生产环境中进行推理性能测试,请通过调用接口的方式进行测试。 benchmark方法介绍 性能benchmark包括两部分。
推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动
推理性能测试 本章节介绍如何进行推理性能测试,建议在Notebook的JupyterLab中另起一个Terminal,执行benchmark脚本进行性能测试。如果需要在生产环境中进行推理性能测试,请通过调用接口的方式进行测试。 约束限制 创建在线服务时,每秒服务流量限制默认为10
推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动
推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动
推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动