检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
照片建模 照片建模任务创建失败是什么原因? 照片建模任务出现异常问题怎么办? 风格化照片建模的照片有什么要求? 风格化照片建模生成的模型文件是什么格式? 表情驱动数据格式如何定义? 肢体驱动数据格式如何定义?
通用”页签,单击“创意活动方案生成”进入该应用。 图1 “创意活动方案生成”应用 如图2,在应用页面,输入所需的活动主题与活动描述,单击“创作”。 图2 活动主题与描述 该预置应用将根据所输入的主题与描述,在“结果生成”中生成相应的创意活动方案。 图3 创意活动方案生成结果
应用提示词生成面试题目 应用场景说明:将面试者的简历信息输入给大模型,基于简历生成面试问题,用于辅助人工面试或实现自动化面试。 父主题: 提示词应用示例
基于图片URL创建照片建模任务 功能介绍 该接口用于从URL中获取图片进行照片建模任务。 调用方法 请参见如何调用API。
创建照片建模任务 功能介绍 该接口用于创建风格化照片建模任务。通过上传照片,生成风格化数字人模型。 调用方法 请参见如何调用API。
``` %s ``` 生成的内容必须满足以下要求: 1.生成内容的字数要求为200个字左右; 2.生成的内容必须生动有趣、丰富多样; 3.生成内容的语言风格必须口语化; 4.生成的内容开头必须能足够引起观众的兴趣,比如可以采取对目标观众反问、对比等方式; 5.生成的内容结尾必须要引导观众购买;
e npm i @huaweicloud/huaweicloud-sdk-pangulargemodels 在线生成SDK代码 API Explorer可根据需要动态生成SDK代码功能,降低您使用SDK的难度,推荐使用。 您可以在API Explorer中具体API页面的“代码示
例如,“结合金融领域相关知识,生成一份调研报告大纲,报告主题是区块链洞察”、“以上是某理财app用户反馈的问题,请提供解决方案。” 人设: 增加人设可以让生成的内容更符合该领域需求。 例如,“假设你是一位银行面试官,请生成10个银行面试问题。”、“假如你是一个高级文案策划,请生成10个理财产品的
文本生成:对于文本生成场景(宣传文案生成、信稿文本生成、文学创作等),通常希望生成的文本有一点的多样性,建议在保证不过于随机的基础上,增大“温度”或“核采样”的值(二者选其一调整)。若发现生成的文本过于发散,可以降低“话题重复度控制”的值,保证内容统一;反之若发现内容过于单一,甚至出现了复读机式的重复内容生成,则需要增加“话题重复度控制”的值。
Java、Python、Go、.NET、NodeJs、PHP 给定一个提示和一些参数,模型会根据这些信息生成一个或多个预测的补全,还可以返回每个位置上不同词语的概率。它可以用来做文本生成、自动写作、代码补全等任务。 开发环境要求 华为云盘古大模型推理SDK要求: Java SDK适用于JDK
数据加工算子为用户提供了多种数据操作能力,包括数据提取、过滤、转换、打标签等。这些算子能够帮助用户从海量数据中提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台支持文本类数据集的加工操作,分为数据提取、数据转换、数据过滤三类,文本类加工算子能力清单见表1。 表1 文本类加工算子能力清单
数据加工算子为用户提供了多种数据操作能力,包括数据提取、过滤、转换、打标签等。这些算子能够帮助用户从海量数据中提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台提供了图文类、图片类加工算子,算子能力清单见表1、表2。 图文类加工算子能力清单 表1 图文类加工算子能力清单 算子分类
本支持全量微调、LoRA微调、INT8量化、断点续训、在线推理和能力调测特性。 Pangu-NLP-N1-Chat-128K-20241030 128K 此版本是2024年10月发布的十亿级模型版本,支持128K序列长度在线推理。基于Snt9B3卡支持8卡推理部署,此模型版本仅支
答、文案生成和阅读理解,同时具备逻辑推理、代码生成和插件调用等高级功能。 NLP大模型的训练分为两个关键阶段:预训练和微调。 预训练阶段:在这一阶段,模型通过学习大规模通用数据集来掌握语言的基本模式和语义。这一过程为模型提供了处理各种语言任务的基础,如阅读理解、文本生成和情感分析,但它还未能针对特定任务进行优化。
考察模型逻辑 虽然模型的思考过程是个黑盒,但可以通过反问模型答案生成的逻辑或提问模型是否理解任务要求,考察模型生成的逻辑,提升模型思维过程的可解释性。 对于模型答案的反问 如果模型给出了错误的答案,可以反问模型回答的逻辑,有时可以发现错误回答的根因,并基于此修正提示词。 在反问时
书籍等语料)进行大规模无监督预训练,具备了强大的语言理解、生成、意图识别和逻辑推理能力。这使得大模型在智能问答系统中表现出色:用户输入问题后,大模型依靠其强大的意图理解能力和从大规模预训练语料及通用SFT中获得的知识,生成准确而全面的回答。然而,依赖通用大模型自身知识来回答问题,在某些垂直领域应用中会面临挑战:
数据加工算子为用户提供了多种数据操作能力,包括数据提取、过滤、转换、打标签和评分等。这些算子能够帮助用户从海量数据中提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台支持视频类数据集的加工操作,分为数据提取、数据过滤、数据打标三类,视频类加工算子能力清单见表1。 表1 视频类加工算子能力清单
当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果不完整,出现了异常截断。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“最大Token限制”参数的设置,适当增加该参数的值,可以增大模型回答生成的长度,避免生成异常截断。请注意,该参数值存在上限
数据加工算子为用户提供了多种数据操作能力,包括数据提取、过滤、转换、打标签等。这些算子能够帮助用户从海量数据中提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台支持气象类数据集的加工操作,气象类加工算子能力清单见表1。 表1 气象类加工算子能力清单 算子分类 算子名称 算子描述
描述任务要求。 例如,在文档问答任务中,任务本质不是生成,而是抽取任务,需要让模型“从文档中抽取出问题的答案,不能是主观的理解或解释,不能修改原文的任何符号、字词和格式”, 如果使用“请阅读上述文档,并生成以下问题答案”,“生成”一词不是很恰当,模型会引入一些外部知识。 例如,在
创建提示词评估数据集 批量评估提示词效果前,需要先上传提示词变量数据文件用于创建对应的评估数据集。 提示词变量是一种可以在文本生成中动态替换的占位符,用于根据不同的场景或用户输入生成不同的内容。其中,变量名称可以是任意的文字,用于描述变量的含义或作用。 提示词评估数据集约束限制 上传文件限xlsx格式。
撰写所需提示词 提示词是用来引导模型生成的一段文本。撰写的提示词应该包含任务或领域的关键信息,如主题、风格、格式等。 撰写提示词时,可以设置提示词变量。即在提示词中通过添加占位符{{ }}标识表示一些动态的信息,让模型根据不同的情况生成不同的文本,增加模型的灵活性和适应性。例如,
可以引导大模型生成准确率更高的结果。 单样本/多样本 可以在提示词中提供示例,让模型先学习后回答,在使用这种方法时需要约束新样例不能照抄前面给的参考样例,新样例必须多样化、不能重复等,否则可能会直接嫁接前文样例的内容,也可以约束只是让它学习参考样例的xxx生成思路、xxx风格、xxx生成方法等。