检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ketName/data-cat”。 如需要提前上传待标注的图片,请创建一个空文件夹,然后将图片文件保存在该文件夹下,图片的目录结构如:“/bucketName/data-cat/cat.jpg”。 如您将已标注好的图片上传至OBS桶,请按照如下规范上传。 物体检测数据集要求用户
对于不同类型的数据,用户可以选择不同的标注类型。当前ModelArts支持如下类型的标注作业: 图片 图像分类:识别一张图片中是否包含某种物体。 物体检测:识别出图片中每个物体的位置及类别。 图像分割:根据图片中的物体划分出不同区域。 音频 声音分类:对声音进行分类。 语音内容:对语音内容进行标注。
对于不同类型的数据集,用户可以选择不同的标注任务,当前ModelArts支持如下类型的标注任务。 图片 图像分类:识别一张图片中是否包含某种物体。 物体检测:识别出图片中每个物体的位置及类别。 图像分割:根据图片中的物体划分出不同区域。 音频 声音分类:对声音进行分类。 语音内容:对语音内容进行标注。
ketName/data-cat”。 如需要提前上传待标注的图片,请创建一个空文件夹,然后将图片文件保存在该文件夹下,图片的目录结构如:“/bucketName/data-cat/cat.jpg”。 如您将已标注好的图片上传至OBS桶,请按照如下规范上传。 图像分类数据集要求将标
使用订阅算法训练结束后没有显示模型评估结果 问题现象 AI Gallery中的YOLOv5算法,训练结束后没有显示模型评估结果。 原因分析 未标注的图片过多,导致没有模型评估结果。 处理方法 对所有训练数据进行标注。 父主题: 预置算法运行故障
tB4进行训练报错:TypeError: unhashable type: ‘list’。 原因分析 可能由于使用了多标签分类导致(即一个图片用了1个以上的标签)。 处理方法 使用单标签分类的数据集进行训练。 父主题: 数据集问题导致训练失败
推理服务测试 推理服务在线测试支持文件、图片、json三种格式。通过部署为在线服务Predictor可以完成在线推理预测。 示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 场景:部署在线服务Predictor的推理预测
imshow在jupyter这样的client/server环境下存在问题。 而matplotlib不存在这个问题。 解决方法 参考如下示例进行图片显示。注意opencv加载的是BGR格式, 而matplotlib显示的是RGB格式。 Python语言: 1 2 3 4 5 6 from
用于智能标注的数据集必须存在至少2种标签,且每种标签已标注的图片不少于5张。 用于智能标注的数据集必须存在未标注图片。 检查用于标注的图片数据,确保您的图片数据中,不存在RGBA四通道图片。如果存在四通道图片,智能标注任务将运行失败,因此,请从数据集中删除四通道图片后,再启动智能标注。 启动智能标注前要
JupyterLab是一个交互式的开发环境,可以使用它编写Notebook、操作终端、编辑MarkDown文本、打开交互模式、查看csv文件及图片等功能。可以说,JupyterLab是开发者们下一阶段更主流的开发环境。 ModelArts支持通过JupyterLab工具在线打开Not
Standard数据管理 ModelArts Standard数据管理提供了一套高效便捷的管理和标注数据框架。支持图片、文本、语音、视频等多种数据类型,涵盖图像分类、目标检测、音频分割、文本分类等多个标注场景,适用于计算机视觉、自然语言处理、音视频分析等AI项目场景。 ModelArts
19:基于gaussianblur的数据增强与原图预测结果不一致。 20:基于fliplr的数据增强与原图预测结果不一致。 21:基于crop的数据增强与原图预测结果不一致。 22:基于flipud的数据增强与原图预测结果不一致。 23:基于scale的数据增强与原图预测结果不一致。 24:基于t
19:基于gaussianblur的数据增强与原图预测结果不一致。 20:基于fliplr的数据增强与原图预测结果不一致。 21:基于crop的数据增强与原图预测结果不一致。 22:基于flipud的数据增强与原图预测结果不一致。 23:基于scale的数据增强与原图预测结果不一致。 24:基于t
景,将下图识别为汽车的图片。 图1 图像分类 物体检测是计算机视觉中的经典问题之一,其任务是用框去标出图像中物体的位置,并给出物体的类别。通常在一张图包含多个物体的情况下,定制识别出每个物体的位置、数量、名称,适合图片中有多个主体的场景,针对下图检测出图片包含树和汽车。 图2 物体检测
19:基于gaussianblur的数据增强与原图预测结果不一致。 20:基于fliplr的数据增强与原图预测结果不一致。 21:基于crop的数据增强与原图预测结果不一致。 22:基于flipud的数据增强与原图预测结果不一致。 23:基于scale的数据增强与原图预测结果不一致。 24:基于t
19:基于gaussianblur的数据增强与原图预测结果不一致。 20:基于fliplr的数据增强与原图预测结果不一致。 21:基于crop的数据增强与原图预测结果不一致。 22:基于flipud的数据增强与原图预测结果不一致。 23:基于scale的数据增强与原图预测结果不一致。 24:基于t
ModelArts Standard推理服务访问公网方案 本章节提供了推理服务访问公网的方法。 应用场景 推理服务访问公网地址的场景,如: 输入图片,先进行公网OCR服务调用,然后进行NLP处理; 进行公网文件下载,然后进行分析; 分析结果回调给公网服务终端。 方案设计 从推理服务的算
19:基于gaussianblur的数据增强与原图预测结果不一致。 20:基于fliplr的数据增强与原图预测结果不一致。 21:基于crop的数据增强与原图预测结果不一致。 22:基于flipud的数据增强与原图预测结果不一致。 23:基于scale的数据增强与原图预测结果不一致。 24:基于t
19:基于gaussianblur的数据增强与原图预测结果不一致。 20:基于fliplr的数据增强与原图预测结果不一致。 21:基于crop的数据增强与原图预测结果不一致。 22:基于flipud的数据增强与原图预测结果不一致。 23:基于scale的数据增强与原图预测结果不一致。 24:基于t
19:基于gaussianblur的数据增强与原图预测结果不一致。 20:基于fliplr的数据增强与原图预测结果不一致。 21:基于crop的数据增强与原图预测结果不一致。 22:基于flipud的数据增强与原图预测结果不一致。 23:基于scale的数据增强与原图预测结果不一致。 24:基于t