检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
准备数据集 进入AI Gallery,搜索8类常见生活垃圾图片数据集。 单击“下载”,选择云服务区域“华北-北京四”,单击“确定”进入下载详情页。 填写如下参数: 下载方式:ModelArts数据集。 目标区域:华北-北京四。 数据类型:图片。 数据集输出位置:用来存放输出的数据标注的相关
导入的OBS路径或manifest路径。 导入manifest时,path必须精确到具体manifest文件。 导入为目录时,目前仅支持数据集类型为图片分类、物体检测、文本分类、声音分类。 import_type Integer 导入方式。可选值如下: 0:目录导入 1:按manifest文件导入
AI框架版本升级,使用了新版本算子。 例如:每半年对模型进行一次变更,变更的内容包含模型结构,并升级AI框架。 - 尺寸要求 超分前产生的图片尺寸要求: 512*512 720*720 1080 *1080 1920*1920 (shape过大可能导致性能下降) - 父主题: GPU推理业务迁移至昇腾的通用指导
<镜像名称>:<版本名称>:定义镜像名称。示例:pytorch_2_1_ascend:20240606。 ${base_image}为基础镜像地址。 如果推理需要使用NPU加速图片预处理,适配了llava-1.5模型,启动时需要设置export ENABLE_USE_DVPP=1,需要安装torchvision_npu,可放到镜像制作脚本
模型支持部署的服务类型。 版本数量 模型的版本数量。 请求模式 在线服务的请求模式。 同步请求:单次推理,可同步返回结果(约<60s)。例如: 图片、较小视频文件。 异步请求:单次推理,需要异步处理返回结果(约>60s)。例如: 实时视频推理、大视频文件。 创建时间 模型的创建时间。 描述
与目标语音匹配的唇形同步视频,还可以直接将动态的视频进行唇形转换,输出与输入语音匹配的视频,俗称“对口型”。该技术的主要作用就是在将音频与图片、音频与视频进行合成时,口型能够自然。 Wav2Lip模型的输入为任意的一段视频和一段语音,输出为一段唇音同步的视频。 Wav2Lip的网
AI框架版本升级,使用了新版本算子。 例如:每半年对模型进行一次变更,变更的内容包含模型结构,并升级AI框架。 - 尺寸要求 超分前产生的图片尺寸要求: 512*512 720*720 1080 *1080 1920*1920 (shape过大可能导致性能下降) - 父主题: GPU推理业务迁移至昇腾的通用指导
使用场景 如高性能计算、媒体处理、文件共享和内容管理和Web服务等。 说明: 高性能计算:主要是高带宽的需求,用于共享文件存储,比如基因测序、图片渲染这些。 如大数据分析、静态网站托管、在线视频点播、基因测序和智能视频监控等。 如高性能计算、企业核心集群应用、企业应用系统和开发测试等。
<镜像名称>:<版本名称>:定义镜像名称。示例:pytorch_2_1_ascend:20240606。 ${base_image}为基础镜像地址。 如果推理需要使用NPU加速图片预处理,适配了llava-1.5模型,启动时需要设置export ENABLE_USE_DVPP=1,需要安装torchvision_npu,可放到镜像制作脚本
用于后续的训练或推理任务 plot_loss true 用于指定是否绘制损失曲线。如果设置为"true",则在训练结束后,将损失曲线保存为图片 overwrite_output_dir true 是否覆盖输出目录。如果设置为"true",则在每次训练开始时,都会清空输出目录,以便保存新的训练结果。
计时长2分钟左右。 在线服务部署完成后,您可以单击操作列的预测,进入服务详情页的“预测”页面。 在“预测”页签,单击“上传”,上传一个测试图片,单击“预测”进行预测。此处提供一个预测样例图供使用。 步骤6:清除资源 为避免产生不必要的费用,通过此示例学习订阅算法的使用后,建议您清除相关资源,避免造成资源浪费。
”。 图1 示例图片 添加指标查询信息。 图2 示例图片 添加方式:选择“按指标维度添加”。 指标名称:在右侧下拉框中选择“全量指标”,然后选择想要查询的指标,参考表1、表2 指标维度:填写过滤该指标的标签,请参考表4的Label名字栏。样例如下: 图3 示例图片 单击确定,即可出现指标信息。
${base_image}为基础镜像地址。 ${image_name}为推理镜像名称,可自行指定。 运行完后,会生成推理所需镜像。 多模态场景下,如果推理需要使用NPU加速图片预处理(仅适配了llava-1.5模型),启动时需要设置export ENABLE_USE_DVPP=1,需要安装torchvision_npu,可放到镜像制作脚本
ascend_cloud_ops_atb-xx.whl Step4 开始推理 在容器工作目录下进到Qwen-VL/infer_test,将要测试的图片放到Qwen-VL/infer_test/images文件夹中,执行如下命令,运行推理脚本。 bash infer_demo.sh 推理结果如下所示:
导入的OBS路径或manifest路径。 导入manifest时,path必须精确到具体manifest文件。 导入为目录时,目前仅支持数据集类型为图片分类、物体检测、文本分类、声音分类。 import_samples 否 Boolean 是否导入样本。可选值如下: true:导入样本(默认值)
用于后续的训练或推理任务 plot_loss true 用于指定是否绘制损失曲线。如果设置为"true",则在训练结束后,将损失曲线保存为图片 overwrite_output_dir true 是否覆盖输出目录。如果设置为"true",则在每次训练开始时,都会清空输出目录,以便保存新的训练结果。
shell python mslite_pipeline.py 图2 执行推理脚本 图3 MindSpore Lite pipeline输出的结果图片 父主题: 应用迁移
数据集压缩包上传至Notebook后解压 方法二:文件夹直接上传至Notebook。 类似上传代码至Notebook,直接上传数据文件夹。(由于本案例数据集中图片数量较多,通过IDE进行上传比较耗时,推荐使用方法一进行上传) 图16 文件夹直接上传至Notebook 当数据集比较大达到数GB时,建议
too large. 图片大小超限 请上传小于7M的图片。 400 ModelArts.5062 The number of the images uploaded today has reached the limit. 当日上传图片数量超限 请次日再上传图片。 400 ModelArts
当前自动学习支持快速创建图像分类、物体检测、预测分析、声音分类和文本分类模型的定制化开发。可广泛应用在工业、零售安防等领域。 图像分类:识别图片中物体的类别。 物体检测:识别出图片中每个物体的位置和类别。 预测分析:对结构化数据做出分类或数值预测。 声音分类:对环境中不同声音进行分类识别。 文本分类:识别一段文本的类别。