检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
total_count Integer 不分页的情况下,符合查询条件的总服务数量。 count Integer 当前查询结果的服务数量,不设置offset、limit查询参数时,count与total相同。 services service结构数组 查询到的服务集合。 表3 service结构
访问在线服务支持的访问通道 通过公网访问通道的方式访问在线服务 通过VPC访问通道的方式访问在线服务 通过VPC高速访问通道的方式访问在线服务 父主题: 将模型部署为实时推理作业
访问在线服务支持的传输协议 使用WebSocket协议的方式访问在线服务 使用Server-Sent Events协议的方式访问在线服务 父主题: 将模型部署为实时推理作业
],列表中元素“service_instance”对象即为服务管理章节描述的可调用服务接口。 支持按照检索参数查询服务列表,返回满足检索条件的服务list,检索参数如表1所示。 在查询列表时,返回list的同时,默认会打印模型列表的详细信息,如表2和表3所示。 表1 查询检索参数说明 参数 是否必选
audio”的报错。 完成参数填写后,根据界面提示完成批量服务的部署。部署服务一般需要运行一段时间,根据您选择的数据量和资源不同,部署时间将耗时几分钟到几十分钟不等。 批量服务部署完成后,将立即启动,运行过程中将按照您选择的资源按需计费。 您可以前往批量服务列表,查看批量服务的基本情况
查询服务详情 查询当前服务对象的详细信息。 示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 方式1:根据部署在线服务生成的服务对象进行服务详情查询 1 2 3 4 5 6 7 from
ModelArts在线服务预测时,如何提高预测速度? 部署在线服务时,您可以选择性能更好的“实例规格”提高预测速度。例如使用GPU资源代替CPU资源。 部署在线服务时,您可以增加“实例数”。 如果实例数设置为1,表示后台的计算模式是单机模式;如果实例数设置大于1,表示后台的计算模式为分布式的。您可以根据实际需求进行选择。
推理服务测试 推理服务在线测试支持文件、图片、json三种格式。通过部署为在线服务Predictor可以完成在线推理预测。 示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 场景:部署在线服务Predictor的推理预测
配置api-server服务是否使用openai服务,默认为1。当配置为1时,启动服务为openai服务;当配置为0时,启动服务为vllm服务。 其中常见的参数如下, --host:服务部署的IP --port:服务部署的端口,注意如果不同实例部署在一台机器上,不同实例需要使用不
配置api-server服务是否使用openai服务,默认为1。当配置为1时,启动服务为openai服务;当配置为0时,启动服务为vllm服务。 其中常见的参数如下, --host:服务部署的IP --port:服务部署的端口,注意如果不同实例部署在一台机器上,不同实例需要使用不
配置api-server服务是否使用openai服务,默认为1。当配置为1时,启动服务为openai服务;当配置为0时,启动服务为vllm服务。 其中常见的参数如下, --host:服务部署的IP --port:服务部署的端口,注意如果不同实例部署在一台机器上,不同实例需要使用不同端口号
修改在线服务配置 对于已部署的服务,您可以修改服务的基本信息以匹配业务变化,更换模型的版本号,实现服务升级。 您可以通过如下两种方式修改服务的基本信息: 方式一:通过服务管理页面修改服务信息 方式二:通过服务详情页面修改服务信息 前提条件 服务已部署成功,“部署中”的服务不支持修改服务信息进行升级。
部署推理服务 非分离部署推理服务 分离部署推理服务 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.908)
部署推理服务 非分离部署推理服务 分离部署推理服务 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.910)
部署推理服务 非分离部署推理服务 分离部署推理服务 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.911)
ip:为步骤五:在每个节点进入容器并启动推理服务第4小步中配置的config.json中ipAddress值 port:为步骤五:在每个节点进入容器并启动推理服务第4小步中配置的config.json中port字段的值 请求调用返回json参考如下: 父主题: 部署推理服务
扩缩容模型服务实例数 在使用大型模型进行推理时,其业务需求会呈现出明显的峰谷波动。因此,模型服务必须具备灵活的扩缩容能力,以适应不同时间段内的用户负载变化,确保服务的高可用性和资源的高效利用。 ModelArts Studio大模型即服务平台支持手动扩缩容模型服务的实例数,该操作不会影响部署服务的正常运行。
使用单卡启动服务。 --block-size:kv-cache的block大小,推荐设置为128。当前仅支持64和128。 --host=${docker_ip}:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址,默认为None,举例:参数可以设置为0.0.0.0。
real-time类型必选。权重百分比,分配到此模型的流量权重,仅当infer_type为real-time时需要配置,多个权重相加必须等于100;当在一个在线服务中同时配置了多个模型版本且设置不同的流量权重比例时,持续地访问此服务的预测接口,ModelArts会按此权重比例将预测请求转发到对应的模型版本实例。 specification
enable_lora=True表示开启multi-lora的精度验证。如果不开启multi-lora的精度验证,不体现enable_lora参数即可。 lora_local_path=${lora_local_path}是挂载适配器对应路径,取值和multi-lora特性使用说明中的参数lora1=/path/