检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
912-xxx.zip,并直接进入到llm_train/AscendFactory文件夹下面 unzip AscendCloud-*.zip -d ./AscendCloud && unzip ./AscendCloud/AscendCloud-LLM-*.zip -d ./Asc
例如,模型来源于自动学习项目,则计算资源将自动关联自动学习规格供使用。 “实例数” 设置当前版本模型的实例个数。如果节点个数设置为1,表示后台的计算模式是单机模式;如果节点个数设置大于1,表示后台的计算模式为分布式的。请根据实际编码情况选择计算模式。 “环境变量” 设置环境变量,注入环境变量到容器实例。为确保您的数据
sh文件,来安装依赖以及下载完整代码。 ECS中DockerFIle构建新镜像:在ECS中,通过运行Dockerfile文件会在基础镜像上创建新的镜像。新镜像命名可自定义。Dockerfile会尝试自动下载三方依赖源码并安装依赖的pip包,并将以上源码打包至镜像环境中; 训练作业的资源池以及ECS都需要连通公
908-xxx.zip,并直接进入到llm_train/AscendSpeed文件夹下面 unzip AscendCloud-*.zip -d ./AscendCloud && unzip ./AscendCloud/AscendCloud-LLM-*.zip -d ./Asce
908-xxx.zip,并直接进入到llm_train/AscendSpeed文件夹下面 unzip AscendCloud-*.zip -d ./AscendCloud && unzip ./AscendCloud/AscendCloud-LLM-*.zip -d ./Asce
908-xxx.zip,并直接进入到llm_train/AscendSpeed文件夹下面 unzip AscendCloud-*.zip -d ./AscendCloud && unzip ./AscendCloud/AscendCloud-LLM-*.zip -d ./Asce
基本配置 权限配置 创建网络 专属资源池VPC打通 ECS服务器挂载SFS Turbo存储 在ECS中创建ma-user和ma-group obsutil安装和配置 (可选)工作空间配置 父主题: 专属资源池训练
total_count Integer 不分页的情况下,符合查询条件的总服务数量。 count Integer 当前查询结果的服务数量,不设置offset、limit查询参数时,count与total相同。 services service结构数组 查询到的服务集合。 表3 service结构
表3 请求Header参数 参数 是否必选 参数类型 描述 Content-Type 否 String 消息体的类型。设置为text/plain,返回临时预览链接。设置为application/octet-stream,返回临时下载链接。 X-Auth-Token 是 String 用户token。
sh时,命令如下: cd /home/ma-user/work/llm_train/AscendSpeed; sh ./scripts/install.sh; sh ./scripts/llama2/0_pl_pretrain_13b.sh 创建训练作业后,会在节点机器中使用基础镜像创建doc
HttpEntity entity = MultipartEntityBuilder.create().addBinaryBody("images", file).setContentType(ContentType.MULTIPART_FORM_DATA).setCharset(Consts
ers版本 GLM4-9B模型,容器内执行以下步骤: pip install transformers==4.43.2 其它模型,容器内执行以下步骤: pip install transformers==4.45.0 pip install tokenizers==0.20.0 使用原始hf权重的tokenizer
s的Notebook开发环境中,调试和运行代码。 对于使用本地IDE的开发者,由于本地资源限制,运行和调试环境大多使用团队公共搭建的资源服务器,并且是多人共用,这带来一定的环境搭建和维护成本。 而ModelArts的Notebook的优势是即开即用,它预先装好了不同的AI引擎,并
Serve_from_sub_path设置为true 保存Notebook镜像。 进入Notebook控制台,单击“开发空间 > Notebook”,在Notebook实例列表里找到对应的实例,选择“更多 > 保存镜像”。 在保存镜像对话框中,设置组织、镜像名称、镜像版本和描述信息。单击“确定”保存镜像。
sh时,命令如下: cd /home/ma-user/work/llm_train/AscendSpeed; sh ./scripts/install.sh; sh ./scripts/llama2/0_pl_pretrain_13b.sh 创建训练作业后,会在节点机器中使用基础镜像创建doc
sh时,命令如下: cd /home/ma-user/work/llm_train/AscendSpeed; sh ./scripts/install.sh; sh ./scripts/llama2/0_pl_pretrain_13b.sh 创建训练作业后,会在节点机器中使用基础镜像创建doc
= Environment("tensorflow_mlp_mnist") cd = CondaDependencies.create(pip_packages=["tensorflow==1.13.1", "Pillow>=8.0.1"],
bos_token + '[INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif
罗列选中模型对环境的依赖。例如依赖“tensorflow”,安装方式为“pip”,其版本必须为1.8.0及以上版本。 “模型说明” 为了帮助其他模型开发者更好的理解及使用您的模型,建议您提供模型的说明文档。单击“添加模型说明”,设置“文档名称”及其“URL”。模型说明支持增加3条。 “配置文件”
路径。 Data OBS Path 设置为存储训练数据的OBS路径,例如“/test-modelarts2/mnist/dataset-mnist/”,其中“test-modelarts2”为桶名称。 Training OBS Path 设置OBS路径,该路径下会自动创建用于存放训练输出模型和训练日志的目录。