检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
json,数据大小:43.6 MB。 自定义数据 预训练数据:用户也可以自行准备预训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改
json,数据大小:43.6 MB。 自定义数据 预训练数据:用户也可以自行准备预训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改
json,数据大小:43.6 MB。 自定义数据 预训练数据:用户也可以自行准备预训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改
json,数据大小:43.6 MB。 自定义数据 预训练数据:用户也可以自行准备预训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改
0_pl_sft_13b.sh 。 修改模型训练脚本中的配置,参数详解可查看训练参数说明,其中【GBS、MBS、TP、PP】参数值可参考模型推荐参数、NPU卡数设置。 对于Yi系列模型、ChatGLMv3-6B和Qwen系列模型,还需要手动修改训练参数和tokenizer文件,具体请参见训练tokenizer文件说明。
2-11B-Vision-Instruct权重路径 # 指定dataset参数为步骤七:数据集下载与制作中所述custom_dataset_info_demo.json中文件设置的数据集名称:coco2014_train_40k_demo # 修改custom_dataset_info参数路径为${containe
推理专属预置镜像列表 ModelArts的推理平台提供了一系列的基础镜像,用户可以基于这些基础镜像构建自定义镜像,用于部署推理服务。 X86架构(CPU/GPU)的推理基础镜像 表1 TensorFlow AI引擎版本 支持的运行环境 镜像名称 URI 2.1.0 CPU GPU(cuda10
FlUX.1基于DevServer适配PyTorch NPU推理指导(6.3.912) Flux是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。官方提供了三个版本:FLUX.1-pro、FLUX.1-dev和FLUX.1-schnell。 方案概览 本方案介绍了在ModelArts
|──llm_tools # 推理工具 工作目录介绍 详细的工作目录参考如下,建议参考以下要求设置工作目录。训练脚本以分类的方式集中在scripts文件夹中。 ${workdir}(例如/home/ma-user/ws ) |──llm_train
执行的时长。 events 否 Array of strings 执行的事件。 labels 否 Array of strings 为执行记录设置的标签。 data_requirements 否 Array of DataRequirement objects 节点steps使用到的数据。
鼠标移动至节点名称上,复制需要退订的实例ID。 图3 复制实例ID Server购买订单里绑定的资源ID为Server ID,与Server产品所封装的BMS/ECS ID不同,若要退订Server,需要在ModelArts控制台的“资源管理 > AI专属资源池 > 弹性节点Server”中查询对应ID。
co/PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers/tree/main 下载下图中vae文件夹的内容。注意:本地下载文件时配置文件会变成vae_config.json,修改为config.json 图1 下载vae文件夹的内容 下载vgg权重,将下载好的权重放在
是否自动停止:为了避免资源浪费,建议您打开该开关,根据您的需求,选择自动停止时间,也可以自定义自动停止的时间。 图2 选择计算节点规格 图3 设置自动停止 参数填写完毕之后,单击运行状况右边的“继续运行”,单击确认弹窗中的“确定”即可继续完成工作流的运行。 步骤六:预测分析 运行完成
行指定。 运行完后,会生成推理所需镜像。 多模态场景下,如果推理需要使用NPU加速图片预处理(仅适配了llava-1.5模型),启动时需要设置export ENABLE_USE_DVPP=1,需要安装torchvision_npu,可放到镜像制作脚本./AscendCloud/A
是否自动停止:为了避免资源浪费,建议您打开该开关,根据您的需求,选择自动停止时间,也可以自定义自动停止的时间。 图2 选择计算节点规格 图3 设置自动停止 参数填写完毕之后,单击运行状况右边的“继续运行”,单击确认弹窗中的“确定”即可继续完成工作流的运行。 步骤六:预测分析 运行完成
“保存路径”:即导出数据存储的路径。建议不要将数据存储至当前数据集所在的输入路径或输出路径。 图12 导出至OBS 数据导出成功后,您可以前往您设置的保存路径,查看到存储的数据。 查看任务历史 当您导出数据后,可以通过任务历史查看导出任务明细。 在数据集详情页面中,单击右上角“任务历史
SD3.5基于DevServer适配PyTorch NPU的推理指导(6.3.912) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。 本文基于diffusers和comfyui两个框架进行适配。 方案概览 本方案介绍了在ModelArts
wf.AlgorithmParameters(name="save_model_secs", value=wf.Placeholder(name="save_model_secs", placeholder_type=wf.PlaceholderType.INT, default=60
--working-dir String 否 运行算法时所在的工作目录。 --local-code-dir String 否 算法的代码目录下载到训练容器内的本地路径。 --user-command String 否 自定义镜像执行命令。需为/home下的目录。 当code-dir以file://为前缀时,当前字段不生效。
查询模型详情 查询当前模型对象的信息。 示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 方式1:根据导入模型生成的模型对象进行模型详情查询 1 2 3 4 5 6 7 from modelarts