检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
多机必填,单机忽略;节点序号,当前节点ID,一般从0开始,单机默认是0。以8机训练为例,节点ID依次为(0 1 2 3 4 5 6 7);一般ID为0的节点设置为主节点IP。 WORK_DIR /home/ma-user/ws 非必填。容器的工作目录。训练的权重文件保存在此路径下。默认值为:/home/ma-user/ws。
行指定。 运行完后,会生成推理所需镜像。 多模态场景下,如果推理需要使用NPU加速图片预处理(仅适配了llava-1.5模型),启动时需要设置export ENABLE_USE_DVPP=1,需要安装torchvision_npu,可放到镜像制作脚本./AscendCloud/A
文件或者环境变量中密文存放,使用时解密,确保安全; # 本示例以ak和sk保存在环境变量中来实现身份验证为例,运行本示例前请先在本地环境中设置环境变量HUAWEICLOUD_SDK_AK和HUAWEICLOUD_SDK_SK。 __AK = os.environ["HUAWEICLOUD_SDK_AK"]
多机必填。节点序号,当前节点ID,一般从0开始。单机默认是0。以Qwen-72B 5机训练为例,节点ID依次为(0 1 2 3 4);一般ID为0的节点设置为主节点IP。 MODEL_PATH /home/ma-user/ws/processed_for_ma_input/Qwen-14B/converted_weights
json,数据大小:43.6 MB。 自定义数据 预训练数据:用户也可以自行准备预训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改
json,数据大小:43.6 MB。 自定义数据 预训练数据:用户也可以自行准备预训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改
json,数据大小:43.6 MB。 自定义数据 预训练数据:用户也可以自行准备预训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改
修改msvd_eval.sh参数 修改scripts/video/eval/msvd_eval.sh中的参数 模型存放的地方,如果根据第2步的方式保存的模型,设置如下: CKPT="llama-vid/llama-vid-7b-full-224-video-fps-1" 调用openai的key,评
是否自动停止:为避免资源浪费,建议打开自动停止开关,根据您的实际需要,选择自动停止时间,也可以自定义自动停止的时间。 图3 选择计算节点规格 图4 设置自动停止 参数填写完毕之后,单击运行状况右边的“继续运行”,单击确认弹窗中的“确定”即可继续完成工作流的运行。 步骤五:预测分析 运行完成
多机必填,单机忽略;节点序号,当前节点ID,一般从0开始,单机默认是0。以8机训练为例,节点ID依次为(0 1 2 3 4 5 6 7);一般ID为0的节点设置为主节点IP。 WORK_DIR /home/ma-user/ws 非必填。容器的工作目录。训练的权重文件保存在此路径下。默认值为:/home/ma-user/ws。
json,数据大小:43.6 MB。 自定义数据 预训练数据:用户也可以自行准备预训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改
流,节省了前往console配置执行的操作。 使用该方法时需要注意以下几个事项: Workflow中所有出现占位符相关的配置对象时,均需要设置默认值,或者直接使用固定的数据对象 方法的执行依赖于Workflow对象的名称:当该名称的工作流不存在时,则创建新工作流并创建新执行;当该
多机必填,单机忽略。节点序号,当前节点ID,一般从0开始,单机默认是0。以8机训练为例,节点ID依次为(0 1 2 3 4 5 6 7);一般ID为0的节点设置为主节点IP。 WORK_DIR /home/ma-user/ws 非必填。容器的工作目录。训练的权重文件保存在此路径下。默认值为:/home/ma-user/ws。
json,数据大小:43.6 MB。 自定义数据 预训练数据:用户也可以自行准备预训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改
单击“添加授权”。在“访问授权”页面,在“授权对象类型”下面选择“IAM子用户”,“授权对象”选择开发者的账号,“委托选择”选择“新增委托”,“委托名称”设置为“ma_agency_develop_user”,“权限配置”选择“自定义”,“权限名称”勾选“OBS Administrator”。开
with_execution_id 表示创建目录时是否拼接execution_id,默认为“False”。该字段只有在create_dir为True时才支持设置为True。 否 bool 使用示例如下: 实现InputStorage相同的能力 import modelarts.workflow as
多机必填,单机忽略;节点序号,当前节点ID,一般从0开始,单机默认是0。以8机训练为例,节点ID依次为(0 1 2 3 4 5 6 7);一般ID为0的节点设置为主节点IP。 WORK_DIR /home/ma-user/ws 非必填。容器的工作目录。训练的权重文件保存在此路径下。默认值为:/home/ma-user/ws。
json。详细样例参见附录:rank_table_file.json文件。注意:样例为4机部署配置,如果是2机部署则需要删除多余的配置,仅保留2机16卡的配置。 设置rank_table_file.json文件权限。进入rank_table_file.json文件存放目录${path-to-file},执行如下命令。
open(txt_path, 'w') as file: file.write(data['prompt']) 步骤六:设置宿主机文件权限 chmod -R 777 ${work_dir} 步骤七:进入容器 通过容器名称进入容器中。默认使用ma-user用户执行后续命令。
input_shape="images:-1,3,640,640" ge.dynamicDims="1;8;16" 其中input_shape中的-1表示设置动态batch,ge.dynamicDims表示支持的batch值,上面的配置表示输入模型shape支持[1,3,640,640],[8,3