检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
若镜像使用ECS中构建新镜像(二选一)构建的新镜像时,训练作业启动命令中输入: cd /home/ma-user/modelarts/user-job-dir/AscendSpeed; sh ./scripts/obs_pipeline.sh Step2 配置数据输入和输出 单击
Notebook实例ID,可通过调用查询Notebook实例列表接口获取。 project_id 是 String 用户项目ID,获取方法请参见获取项目ID和名称。 请求参数 无 响应参数 状态码:200 表2 响应Body参数 参数 参数类型 描述 action_progress Array of
Notebook实例ID,可通过调用查询Notebook实例列表接口获取。 project_id 是 String 用户项目ID,获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 duration 否 Long 启动后运行时长(单位:毫秒)。 type 否 String
控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略
在弹性裸金属列表中,单击的“退订”,跳转至“退订资源”页面。 根据界面提示,确认需要退订的资源,并选择退订原因。 图2 退订资源 确认退订信息无误后,勾选“我已确认……”和“资源退订后……”提示信息。 单击“退订”,再次根据界面信息确认要退订的资源。 再次单击“退订”,完成包年/包月资源的退订操作。 在费用中心退订单个实例资源
若镜像使用ECS中构建新镜像(二选一)构建的新镜像时,训练作业启动命令中输入: cd /home/ma-user/modelarts/user-job-dir/AscendSpeed; sh ./scripts/obs_pipeline.sh Step2 配置数据输入和输出 单击
若镜像使用ECS中构建新镜像(二选一)构建的新镜像时,训练作业启动命令中输入: cd /home/ma-user/modelarts/user-job-dir/AscendSpeed; sh ./scripts/obs_pipeline.sh Step2 配置数据输入和输出 单击
制作自定义镜像用于创建Notebook Notebook的自定义镜像制作方法 在ECS上构建自定义镜像并在Notebook中使用 在Notebook中通过Dockerfile从0制作自定义镜像 在Notebook中通过镜像保存功能制作自定义镜像 父主题: 制作自定义镜像用于ModelArts
er”、“number” 、“raw”和“string”。 表单字段类型为“slider”时,支持输入滑动条的最小值、最大值和步长。 Hide code 隐藏代码区域。 Hide form 隐藏表单区域。 Show all 同时展示code和form区域。 图19 “dropdo
控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略
_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 workflow_id 是 String 工作流的ID。 execution_id 是 String 工作流执行ID。 请求参数 无
推荐使用“西南-贵阳一”Region上的Server资源和Ascend Snt9B单机。 表1 环境要求 名称 版本 driver 23.0.6 PyTorch pytorch_2.1.0 获取软件和镜像 表2 获取软件和镜像 分类 名称 获取路径 插件代码包 AscendCloud-6
控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略
sh 如果镜像使用ECS中构建新镜像构建的新镜像时,训练作业启动命令中输入: cd /home/ma-user/modelarts/user-job-dir/AscendSpeed; sh ./scripts/obs_pipeline.sh Step2 配置数据输入和输出 单击“增加
控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略
sh 如果镜像使用ECS中构建新镜像构建的新镜像时,训练作业启动命令中输入: cd /home/ma-user/modelarts/user-job-dir/AscendSpeed; sh ./scripts/obs_pipeline.sh Step2 配置数据输入和输出 单击“增加
dependency结构数组 运行代码及模型需安装的包。 model_metrics String 模型评测参数,仅当source_job_id和source_job_version有值且对应的训练作业有评测结果时会返回该结果。 apis String 模型所有的apis入参出参信息。
/all 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID,获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 feature 否 String 实例类别,默认为NOTEBOOK。枚举值如下:
ooks 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID,获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 feature 否 String 实例类别,默认为NOTEBOOK。枚举值如下:
Preference Optimization):直接偏好优化方法,通过直接优化语言模型来实现对大模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 SFT监督式微调(Self-training