检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
导入插件。 单击页面右上角“导入”。 在“导入”页面,单击“选择文件”选择需要导入的jsonl文件。 选择导入文件后,选择解析内容。 平台将自动解析jsonl文件。如果解析的文件在平台中已存在,勾选该文件将自动覆盖平台现有文件。 单击“导入”,导入成功的插件将在“工作台 > 插件”页面中展示。
失、浪费和管理不善的情况?在社会建设专项资金的使用情况中,应规范操作,加强管理,及时纠正和化解建设过程中的解释、调取和留置问题,严防管理漏洞,保证应用资金的安全性和真实性。同时,应建立完善的监管机制,严格管理,加强监督,加强专项资金使用情况的评估,加强对建设过程的监管和评估,节约
然在速度和成本上具备优势,但在准确性和语境理解上仍存在一定的不足,例如,处理复杂、专业的内容时。 为了解决这些问题,构建一个自动化的多语言翻译工作流显得尤为重要。通过集成翻译工具(如机器翻译API、大型语言模型等),可以在保证翻译效率的同时,提升翻译质量,并根据实际场景和用户需求进行灵活调整。
效果评估与优化 在低代码构建多语言文本翻译工作流中,优化和评估的关键在于如何设计和调整prompt(提示词)。prompt是与大模型或其他节点(如翻译插件)交互的核心,它直接影响工作流响应的准确性和效果。因此,效果评估与优化应从以下几个方面进行详细分析: 评估工作流响应的准确性:
单击该节点,按照图10,进行参数配置,再单击“确定”。 图10 配置文本翻译插件参数 配置“大模型”节点。 鼠标拖动左侧“大模型”节点至编排页面,连接“意图识别”节点和该节点,连接该节点和“结束”节点,单击该节点进行配置。 在“参数配置”中,配置输入、输出参数。 在“模型配置”中,选择已经部署的NLP大模型并进行参数配置,在“提示词配置”中,配置提示词。
Agent开发平台支持两种类型的插件: 预置插件:平台为开发者和用户提供了预置插件,直接可用,无需额外开发。例如,平台提供的“Python解释器插件”能够根据用户输入的问题自动生成Python代码,并执行该代码获取结果。此插件为Agent提供了强大的计算、数据处理和分析功能,用户只需将其添加到应用中,即可扩展功能。
知识型Agent:以大模型为任务执行核心,适用于文本生成和文本检索任务,如搜索问答助手、代码生成助手等。用户通过配置Prompt、知识库等信息,使得大模型能够自主规划和调用工具。 优点:零代码开发,对话过程智能化。 缺点:大模型在面对复杂的、长链条的流程时可能会受到输入长度限制,难以有效处理较为复杂的工作流。
PI调用推理接口。 表1 API清单 API 功能 操作指导 NLP大模型-文本对话 基于对话问答功能,用户可以与模型进行自然而流畅的对话和交流。 文本对话 科学计算大模型-气象/降水模型 支持创建推理作业并查询推理作业详情。 气象/降水模型 科学计算大模型-海洋模型 支持创建推理作业并查询推理作业详情。
表面静态量默认包括地形高度、LAND_MASK和SOIL_TYPE,用于初始化模型状态并提供地表特性信息。当前不支持添加或去除这些静态量。 LAND_MASK:一个二维数组,表示模型网格中每个单元格是否是陆地。 SOIL_TYPE:表示地表土壤分类,影响土壤的物理和化学特性,如水分保持能力、热容量和导热性。 模型输出控制参数
常能够实现最佳的模型性能,但需要消耗大量计算资源和时间,计算开销较大。 基础模型 选择全量微调所用的基础模型, 可从“已发布模型”或“未发布模型”中进行选择。 高级设置 checkpoints:在模型训练过程中,用于保存模型权重和状态的机制。 关闭:关闭后不保存checkpoin
练轮次,用于帮助模型在训练初期稳定收敛,避免大幅度的参数更新导致不稳定的学习过程。 锚框的长边和短边的比例 定义检测物体锚框的长宽比。通过设置不同的长短比例,模型可以更好地适应多种尺寸和形状的物体。 锚框大小 指锚框的初始尺寸。锚框是物体检测中的一个关键概念,通过合理设置,可以帮助模型检测出多种尺寸的目标。
全球范围,纬度90N~-90S,经度0W~360E。 训练集和验证集均推荐使用>1个月的历史数据。 训练数据一般可通过公开数据集获取,例如ERA5。ERA5是由欧洲中期天气预报中心(ECMWF)提供的全球气候的第五代大气再分析数据集,它覆盖从1940年1月至今的时间段,提供每小时的大气、陆地和海洋气候变量的估计值。
繁出现相同词汇。 平衡的:平衡模型输出的随机性和准确性。 创意性的:模型输出内容更具多样性和创新性,某些场景下可能会偏离主旨。 自定义:自定义大模型输出的温度和核采样值,生成符合预期的输出。 温度 调高温度会使得模型的输出更多样性和创新性,反之,降低温度会使输出内容更加遵循指令要求但减少多样性,取值范围为0到1之间。