检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
1. 在模型的保存目录中创建quant_config.json文件,bits必须设置为8,指定量化为int8;group_size必须设置为-1,指定不使用pergroup;desc_act必须设置为false,内容如下: { "bits": 8, "group_size":
1. 在模型的保存目录中创建quant_config.json文件,bits必须设置为8,指定量化为int8;group_size必须设置为-1,指定不使用pergroup;desc_act必须设置为false,内容如下: { "bits": 8, "group_size":
1. 在模型的保存目录中创建quant_config.json文件,bits必须设置为8,指定量化为int8;group_size必须设置为-1,指定不使用pergroup;desc_act必须设置为false,内容如下: { "bits": 8, "group_size":
如何在ModelArts的Notebook实例中使用ModelArts数据集? ModelArts上创建的数据集存放在OBS中,可以将OBS中的数据下载到Notebook中使用。 Notebook中读取OBS数据方式请参见如何在ModelArts的Notebook中上传下载OBS文件?。
(此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。 SN 1200 必须修改。指定的输入数据集中数据的总数量。更换数据集时,需要修改。
--seq-length:要处理的最大seq length。 --workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径: 训练完成后,以
某条工作流,目前只能存在一个正在运行的实例,如果用户想要使同一个工作流同时运行多次,可以使用复制工作流的功能。单击列表页的操作栏“更多”,选择“复制”,出现复制Workflow弹窗,新名称会自动生成(生成规则:原工作流名称 + '_copy')。 用户也可以自行修改新工作流名称,但会有校验规则验证新名称是否符合要求。
在模型转换的过程,如果出现模型转换失败,可以参考以下步骤查看日志并定位原因: 设置DEBUG日志。 设置MindSpore日志环境变量。 # shell export GLOG_v=0 # 0-DEBUG、1-INFO、2-WARNING、3-ERROR 设置CANN日志环境变量。 # shell export
alpaca_gpt4_data.json,数据大小:43.6 MB。 自定义数据 预训练数据:用户也可以自行准备预训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this
or false】,默认false do_train true 指示脚本执行训练步骤,用来控制是否进行模型训练的。如果设置为true,则会进行模型训练;如果设置为false,则不会进行模型训练。 cutoff_len 4096 文本处理时的最大长度,此处为4096,用户可根据自己要求适配。
API文档以及常用的Python编码,您可以参考本章节使用MoXing Framework的一些进阶用法。 读取完毕后将文件关闭 当读取OBS文件时,实际调用的是HTTP连接读取网络流,注意要记得在读取完毕后将文件关闭。为了防止忘记文件关闭操作,推荐使用with语句,在with语句退出时会自动调用mox.file
--seq-length:要处理的最大seq length。 --workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 微调数据集预处理参数说明 微
最小长度,可以根据实际需求设置。 --max-input:输入tokens最大长度,可以根据实际需求设置。 --avg-input:输入tokens长度平均值,可以根据实际需求设置。 --std-input:输入tokens长度方差,可以根据实际需求设置。 --min-outpu
最小长度,可以根据实际需求设置。 --max-input:输入tokens最大长度,可以根据实际需求设置。 --avg-input:输入tokens长度平均值,可以根据实际需求设置。 --std-input:输入tokens长度方差,可以根据实际需求设置。 --min-outpu
置。 表1 部署模型服务 参数 说明 服务设置 服务名称 自定义部署模型服务的名称。 支持1~64位,以中文、大小写字母开头,只包含中文、大小写字母、数字、中划线、下划线的名称。 描述 自定义部署模型服务的简介。支持256字符。 模型设置 部署模型 单击“选择模型”,选择“模型广场”或“我的模型”下面的模型。
odepools/{nodepool_name} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 pool_name 是 String 资源池名称。 nodepool_name 是 String
开发环境管理 创建Notebook实例 查询Notebook实例列表 查询所有Notebook实例列表 查询Notebook实例详情 更新Notebook实例 删除Notebook实例 通过运行的实例保存成容器镜像 查询Notebook支持的有效规格列表 查询Notebook支持的可切换规格列表
过程。 数据清洗是在数据校验的基础上,对数据进行一致性检查,处理一些无效值。例如在深度学习领域,可以根据用户输入的正样本和负样本,对数据进行清洗,保留用户想要的类别,去除用户不想要的类别。 数据选择:数据选择一般是指从全量数据中选择数据子集的过程。 数据可以通过相似度或者深度学习
模型推荐的参数与NPU卡数设置 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量 文本序列长度 并行参数设置 规格与节点数 1 llama2
--seq-length:要处理的最大seq length。 --workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 微调数据集预处理参数说明 微