检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练日志可以按照不同的节点(训练阶段)进行筛选查看。分布式训练时,任务被分配到多个工作节点上进行并行处理,每个工作节点负责处理一部分数据或执行特定的计算任务。日志也可以按照不同的工作节点(如worker-0表示第一个工作节点)进行筛选查看。
单击操作列的“更多 > 重试”,可以编辑运行失败的节点,重试该节点的训练。 删除。单击操作列的“更多 > 删除”,可以删除当前不需要的训练任务。 父主题: 训练科学计算大模型
单击操作列的“更多 > 重试”,可以编辑运行失败的节点,重试该节点的训练。 删除。单击操作列的“更多 > 删除”,可以删除当前不需要的训练任务。 父主题: 训练NLP大模型
训练日志可以按照不同的节点(训练阶段)进行筛选查看。分布式训练时,任务被分配到多个工作节点上进行并行处理,每个工作节点负责处理一部分数据或执行特定的计算任务。日志也可以按照不同的工作节点(如worker-0表示第一个工作节点)进行筛选查看。
流程型Agent:以工作流为任务执行核心,用户通过在画布上对组件进行“拖拉拽”即可搭建出任务流程,场景的组件包括LLM节点、Code节点、Branch节点等,优点是可扩展能力强,用户适当使用低码开发,缺点是对话交互智能度不高,复杂场景下分支多,难以维护。
获取项目ID的接口为“GET https://{Endpoint}/v3/projects”,其中{Endpoint}为IAM的终端节点,可以从地区和终端节点获取。接口的认证鉴权请参见认证鉴权。
单击“节点详情”页签。 可以查看到该次执行的主要组件耗时时长和占比情况,以及该次执行的调用链及其是否成功的状态。 单击调用链中的某个组件(例如插件天气搜索),展开调用链。 可以查看到调用链中该组件的输入和输出。 此外,平台支持配置构建应用所需的NLP大模型参数。
配置判断组件 判断组件是一个if-else节点,提供了多分支条件判断的能力,用于设计分支流程。 当向该节点输入参数时,节点会判断输入是否符合“参数配置”中预设的条件,符合则执行“IF”对应的工作流分支,否则执行“ELSE”对应的工作流分支。
keypoints 是 关键点的名称列表,COCO格式中通常定义了17个关键点,如nose、left_eye、right_eye、left_ear、right_ear、left_shoulder、right_shoulder、left_elbow、right_elbow、left_wrist
设置背景及人设 背景: 模型基于简单prompt的生成可能是多范围的各方向发散的,如果您需要进行范围约束,或加强模型对已有信息的理解,可以进行提示:“结合xxx领域的专业知识...理解/生成...”、“你需要联想与xxx相关的关键词、热点信息、行业前沿热点等...生成...”,或者可以说明已有的信息是什么领域的信息
配置知识 配置知识的步骤如下: 在“高级配置 > 知识”,单击“添加”。 在“添加知识”窗口,单击“点此上传”,上传知识文件。 图1 添加知识 上传完成后,单击“确定”。 在“高级配置”中,可查看上传成功的知识文件。 图2 知识上传成功 父主题: 手工编排Agent应用
数据集发布场景介绍 数据发布概念 数据发布是指将经过加工、标注、评估的数据集导出并生成符合特定任务或模型训练需求的正式数据集。数据发布是数据处理流程中的关键步骤,也是数据集构建的最终环节。 数据发布过程不仅包括将数据转化为适合使用的格式,还要求根据任务需求对数据集的比例进行科学调整
如何判断盘古大模型训练状态是否正常 判断训练状态是否正常,通常可以通过观察训练过程中Loss(损失函数值)的变化趋势。损失函数是一种衡量模型预测结果和真实结果之间的差距的指标,正常情况下越小越好。 您可以从平台的训练日志中获取到每一步的Loss,并绘制成Loss曲线,来观察其变化趋势
预测类数据集格式要求 平台支持创建预测类数据集,创建时可导入时序数据、回归分类数据。 时序数据:时序预测数据是一种按时间顺序排列的数据序列,每个数据点都有一个时间戳,表示数据在时间上的位置。它用于预测未来事件或趋势,过去的数据会影响未来的预测。 回归分类数据:回归分类数据包含多种预测因子
管理盘古模型资产 模型资产介绍 用户在平台中可试用、订购或训练后发布的模型,将被视为模型资产并存储在空间资产内,方便统一管理与操作。用户可以查看模型的所有历史版本及操作记录,从而追踪模型的演变过程。同时,平台支持一系列便捷操作,包括模型训练、压缩和部署,帮助用户简化模型开发及应用流程
使用数据工程构建科学计算大模型数据集 科学计算大模型支持接入的数据集类型 盘古科学计算大模型仅支持接入气象类数据集,该数据集格式要求请参见气象类数据集格式要求。 构建科学计算大模型训练数据要求 构建科学计算大模型进行训练的数据要求见表1。 表1 科学计算大模型训练数据要求 模型类别
盘古大模型空间资产介绍 在ModelArts Studio大模型开发平台的空间资产中,包括数据和模型两类资产。这些资产为用户提供了集中管理和高效操作的基础,便于用户实现统一查看和操作管理。 数据资产:用户已发布的数据集将作为数据资产存放在空间资产中。用户可以查看数据集的详细信息,包括数据格式
无监督领域知识数据量无法支持增量预训练,如何进行模型学习 一般来说,建议采用增量预训练的方式让模型学习领域知识,但预训练对数据量的要求较大,如果您的无监督文档量级过小,达不到预训练要求,您可以通过一些手段将其转换为有监督数据,再将转换后的领域知识与目标任务数据混合,使用微调的方式让模型学习
空间管理 ModelArts Studio大模型开发平台为用户提供了灵活且高效的空间资产管理方式。平台支持用户根据不同的使用场景、项目类别或团队需求,自定义创建多个工作空间。每个工作空间都是完全独立的,确保了工作空间内的资产不受其他空间的影响,从而保障数据和资源的隔离性与安全性。用户可以根据需求灵活划分工作空间
打造短视频营销文案创作助手 场景介绍 随着互联网的发展,短视频已成为了日常生活中不可或缺的一部分,凭借其独特的形式和丰富的内容吸引了大量流量,并为企业和个人提供了一个全新的营销平台。短视频用户希望借助大模型快速生成高质量的口播文案,以提升营销效果和效率。在这种场景下,用户只需提供一些基本信息