检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
行以下命令构建自定义镜像“test:v1”。 docker build -t test:v1 . 您可以使用“docker images”查看您构建的自定义镜像。 本地验证镜像并上传镜像至SWR服务 在本地环境执行以下命令启动自定义镜像 docker run -it -p 8080:8080
通过CloudShell登录到Linux工作页面,检查GPU工作情况: 通过输入“nvidia-smi”命令,查看GPU工作是否异常。 通过输入“nvidia-smi -q -d TEMPERATURE”命令, 查看TEMP参数是否存在异常, 如果温度过高,会导致训练性能下降。 父主题: 训练作业性能问题
转包周期”。 在弹出的“转包周期”页面,确认无误后单击“确定”。 图1 转包周期 选择弹性集群的购买时长,判断是否勾选“自动续费”,确认预计到期时间和配置费用后单击“去支付”。 进入支付页面,选择支付方式,确认付款,支付订单后即可完成按需转包年/包月。
信息。 单击“提交”,AI Gallery的运营人员将会审核您的申请,后续您可以在“我的Gallery > 合作伙伴”里查看审核进展以及审核结果。 图1 查看审核进度 父主题: 合作伙伴
图1 精度诊断流程 一般情况下,onnx模型推理的结果可以认为是标杆数据,单独替换某个onnx模型为MindSpore Lite模型,运行得到的结果再与标杆数据做对比,如果没有差异则说明pipeline的差异不是由当前替换的MindSpore Lite模型引入。 如果有差异,
用户自定义镜像使用远程SSH功能,OpenSSH版本要兼容或高于8.0; 用户制作的自定义镜像,在本地执行docker run启动,无法正常运行; 用户自行安装了Jupyterlab服务导致冲突的,需要用户本地使用Jupyterlab命令罗列出相关的静态文件路径,删除并且卸载镜像中的Jupyterlab服务;
该环境为在线调试环境,主要面向演示、体验和快速原型调试场景。 优点:可快速、低成本地搭建环境,使用标准化容器镜像,官方Notebook示例可直接运行。 缺点:由于是容器化环境因此不如裸机方式灵活,例如不支持root权限操作、驱动更新等。 环境开通指导请参考Notebook环境创建;样例
/llama-models/llama-7b-hf/int8_kv_cache/ \ --dtype float16 \ --int8_kv_cache 运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 抽取kv-cache量化系数。
模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.909-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的模型训练代码。代码包具体说明请参见模型软件包结构说明。 获取路径:Support-E 请联系您所在企业的华为方技术支持下载获取。
IAM用户获得权限后,登录ModelArts管理控制台,删除该实例,然后重新使用此OBS路径创建Notebook实例。 报错503 如果出现503错误,可能是由于该实例运行代码时比较耗费资源。建议先停止当前Notebook实例,然后重新启动。 报错504 如果报此错误时,请提工单或拨打热线电话协助解决。提工单
模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.906-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的模型训练代码、推理部署代码和推理评测代码。代码包具体说明请参见模型软件包结构说明。 AscendSpeed是用
安装C++的依赖库请参考如何安装C++的依赖库? 在预训练模型中加载参数请参考如何在训练中加载部分训练好的参数? 解析输入路径参数、输出路径参数 运行在ModelArts Standard的训练作业会读取存储在OBS服务的数据,或者输出训练结果至OBS服务指定路径,输入和输出数据需要配置2个地方:
-128-127 Date 日期类型,描述了特定的年月日,格式:yyyy-MM-dd,例如2014-05-29 - - Timestamp 时间戳,表示日期和时间。格式:yyyy-MM-dd HH:mm:ss - - Boolean 布尔类型 1字节 TRUE/FALSE 使用CSV文件时,需要注意以下两点:
本地上传权重文件至SFS Turbo 通过以下两种方式将下载到本地的模型文件上传至SFS Turbo中。方式一操作简单,但是数据传输速度比较慢,费时间。方式二操作相对方式一复杂一些,但是数据传输速度较快。 方式一:将已下载的模型文件通过SSH直接上传至SFS Turbo中。具体步骤如下:
本地上传权重文件至SFS Turbo 通过以下两种方式将下载到本地的模型文件上传至SFS Turbo中。方式一操作简单,但是数据传输速度比较慢,费时间。方式二操作相对方式一复杂一些,但是数据传输速度较快。 方式一:将已下载的模型文件通过SSH直接上传至SFS Turbo中。具体步骤如下:
本地上传权重文件至SFS Turbo 通过以下两种方式将下载到本地的模型文件上传至SFS Turbo中。方式一操作简单,但是数据传输速度比较慢,费时间。方式二操作相对方式一复杂一些,但是数据传输速度较快。 方式一:将已下载的模型文件通过SSH直接上传至SFS Turbo中。具体步骤如下:
模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-3rdLLM-6.3.905-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的模型训练代码、推理部署代码和推理评测代码。代码包具体说明请参见模型软件包结构说明。 AscendSpeed是用
标签名是由中文、大小写字母、数字、中划线、下划线或特殊符号组成,且不超过1024位的字符串。 命名实体场景,是针对文本中的实体片段进行标注,如“时间”、“地点”等。开始标注前,您需要了解: 实体命名标签名是由中文、大小写字母、数字、中划线、下划线或特殊符号组成,且不超过1024位的字符串。
/llama-models/llama-7b-hf/int8_kv_cache/ \ --dtype float16 \ --int8_kv_cache 运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 抽取kv-cache量化系数。
tpu_use_sudo: false use_cpu: false 启动SD1.5 Finetune训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh run_finetune.sh 所有数据保存在auto_log/avg_step_time.txt文本中 auto_lo