检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
通过上传测试图片,在线评估模板分类情况和模板的文字识别情况,保证能在多个模板情况下正确分类测试图片的模板,并且能正确识别测试图片中的识别区文字。 评估应用 部署服务 模板图片评估后,可以部署模板至文字识别开发套件中,开发属于自己的文字识别应用,此应用用于识别自己所上传的多模板样式的图片。 部署服务 父主题:
保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有材质类型的待定级图片。 为保证训练效果,需要准备至少20张待训练的图片数据,低于20张工作流
中找出与待识别文字最相似的取值,作为识别结果。 自定义正则提取 预过滤 对初始的待识别文字进行预处理。 左边输入框填写待识别文字中被替换字符的正则表达式。 右边输入框填写所替换的新字符。 不填写时,默认不做预处理。 如果需要多次预处理,可单击,填写新增的预处理规则。 例如: “字段类型名称”:“出生日期”
中找出与待识别文字最相似的取值,作为识别结果。 自定义正则提取 预过滤 对初始的待识别文字进行预处理。 左边输入框填写待识别文字中被替换字符的正则表达式。 右边输入框填写所替换的新字符。 不填写时,默认不做预处理。 如果需要多次预处理,可单击,填写新增的预处理规则。 例如: “字段类型名称”:“出生日期”
图片中的多个商品。 数据集要求 文件名规范,不能有中文,不能有+、空格、制表符。 保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有标签的图片。
创建名称为“mapro-nlp”的OBS桶。 创建名称为“data-in”的文件夹用于存放训练数据集。 创建名称为“data-out”的文件夹用于存放输出的数据集。 创建OBS桶和文件夹的操作指导请参见创建桶和新建文件夹。为保证数据能正常访问,请务必确保创建的OBS桶与ModelArts Pro服务在同一区域。
Pro 提供的原子组件(Atom)灵活编排新的行业工作流。基于AI 市场,用户还可以相互分享不同行业场景的行业AI 工作流。ModelArts Pro 以“授人以渔”的方式助力企业构建AI 能力,赋能不同行业的AI 应用开发者,让AI 变得触手可及。 与ModelArts的关系 ModelArts
后续会把SKU图片保存至OBS,需要提前创建用于存储数据的OBS桶及文件夹,且数据存储的OBS桶与ModelArts Pro在同一区域,详情请见创建OBS桶。 已在视觉套件控制台选择“零售商品识别工作流”新建应用,并选择训练数据集,详情请见选择数据。 如果您选择的数据集均为已标注数据,可不用创建SK
i'an”中找出与待识别文字最相似的取值,作为识别结果。 自定义正则提取 预过滤 对初始的待识别文字进行预处理。 左边输入框填写待识别文字中被替换字符的正则表达式。 右边输入框填写所替换的新字符。 不填写时,默认不做预处理。 如果需要多次预处理,可单击,填写新增的预处理规则。 例如:
在识别“字段类型”为“城市”的文字时,从“Shenzhen”、“Beijing”、“Xi'an”中找出与待识别文字最相似的取值,作为识别结果。 自定义正则提取 预过滤 对初始的待识别文字进行预处理。 左边输入框填写待识别文字中被替换字符的正则表达式。 右边输入框填写所替换的新字符。 不填写时,默认不做预处理。
图3 零售场景 物流场景 物流场景需要处理各种格式的票据图片,用户可以通过简单的标注生成自己的专属模板,实现关键字段的自动识别和提取。 特点:对各种格式的票据图片,可制作模板实现关键字段的自动识别和提取。 优势:支持不同格式票据图片的自动识别和结构化提取。通过可视化界面操作,轻松指
相是指成分和组织均匀统一的物质部分,金属材料中,一般除了基体相外,还会存在许多的第二相。而第二相对整个金属材料的影响也是巨大的。在钢铁或其下游企业,常需要对钢铁显微成像的金相图片第二相面积含量进行测定。ModelArts Pro提供第二相面积含量测定工作流,能快速准确的返回第二相面积含量测定结果。
创建名称为“training-data-in”的文件夹用于存放训练数据集。 创建名称为“training-data-out”的文件夹用于存放输出的数据集。 创建OBS桶和文件夹的操作指导请参见创建桶和新建文件夹。为保证数据能正常访问,请务必保证创建的OBS桶与ModelArts Pro服务在同一区域。
支持图像任意角度的水平旋转。 目前不支持复杂背景(如户外自然场景、防伪水印等)和文字扭曲图像的文字识别。 用于训练多模板分类器的训练集,需要把各个模板的训练图片打包成一个文件夹并压缩成“zip”包,“zip”包文件大小不超过10M。 例如训练“保险单”模板的训练集,需要把同模板的保险单图
保证图片质量:不能有损坏的图片。 目前支持的格式包括JPG、JPEG、PNG、BMP。 训练数据集 本样例训练数据集使用未标注数据。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有商品分类的图片,即覆盖所有标签的图片。 每个分类标签