检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
而建。但这座木屋又很“特别”,它有一个“山东哥哥助学工作站”的名字。这座木屋,凝聚了“山东哥哥”与贵州山区儿童之间的情谊,也见证了一位名叫隋刚的淄博“80后”小伙18年来的坚守。" } 成功响应示例 { "is_success": true, "flow_id": "b922
允许删除RES的权限策略,控制他们对RES资源的使用范围。 如果华为云账号已经能满足您的要求,不需要创建独立的IAM用户进行权限管理,您可以跳过本章节,不影响您使用RES服务的其它功能。 IAM是华为云提供权限管理的基础服务,无需付费即可使用,您只需要为您账号中的资源进行付费。关
返回结果 状态码 请求发送以后,您会收到响应,包含状态码、响应消息头和消息体。 状态码是一组从1xx到5xx的数字代码,状态码表示了请求响应的状态,完整的状态码列表请参见状态码。 对于获取用户Token接口,如果调用后返回状态码为“201”,则表示请求成功。 响应消息头 对应请求
返回一个资源特征与地址的列表用于用户终端(例如:浏览器)选择。 301 Moved Permanently 永久移动,请求的资源已被永久的移动到新的URI,返回信息会包括新的URI。 302 Found 资源被临时移动。 303 See Other 查看其它地址。 使用GET和POST请求查看。
topK 用户最感兴趣的排序在前K个的物品。 行为 行为类型:用户感兴趣的行为类型。 权重值:行为的初始权重。 衰减系数:用于衰减行为初始权重的系数。 有效时间:用户配置的行为发生时间与当前时间的间隔,以小时为单位。系统只处理在该时间范围内的行为记录。 基于用户相似度的实时召回 基于用
增加用户特征。单击特征后方的删除不需要的用户特征。 物品特征 列表中展示抽取的物品特征和参数类型,此特征会额外应用于所选字段的功能。您可以根据业务需求单击增加物品特征。单击特征后方的删除不需要的物品特征。 您可以从“应用于”右侧的下拉选项中设置该数据的使用维度是“兴趣属性”或者“关键词提取”。其中:
新执行”、“删除”等操作。您也可以通过查看服务的详细信息判读作业训练状态和查询训练结果。 复制离线作业 用户可以通过复制组合作业再次创建新的作业进行离线计算。生成的数据和原来的作业生成的数据相互独立,复制的离线作业会生成新的线上指定的UUID。 操作步骤如下: 登录RES管理控制
白名单地址 白名单所在的路径。白名单之外的物品不应该出现在最终推荐结果集里。白名单内容需要存储在OBS上。 历史行为过滤 单击增加历史行为过滤,单击后方的删除过滤行为。指定与用户个性化的物品候选集过滤准则。例如对于用户过去3天内有过view行为的物品(如新闻)过滤,使之不进入候选集。
实时日志 RES根据实时发送到DIS上的日志,进行数据计算和处理,更新用户的相关数据。用户发送到DIS上的数据具体如下: 实时行为日志 实时行为日志的作用包括: 更新用户的兴趣标签。 记录所选行为类型的历史记录。 更新用户的上下文信息。 召回候选集。 表1 实时行为日志字段描述 字段名
数值稳定常量:为保证数值稳定而设置的一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同的参数调整不同的学习率,对频繁变化的参数以更小的步长进行更新,而稀疏的参数以更大的步长进行更新。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 初
对于获取用户Token接口,您可以从接口的请求部分看到所需的请求参数及参数说明。将消息体加入后的请求如下所示,加粗的斜体字段需要根据实际值填写,其中username为用户名,domainname为用户所属的账号名称,********为用户登录密码,xxxxxxxxxx为project的名称,如“cn-n
在购物车场景,使用的召回候选集来自于离线计算基于物品的协同过滤生成的候选集,而为了尽可能保证推荐的匹配度,要求推荐出来的物品尽可能的与用户性别、体质和年龄等属性吻合,所以考虑基于用户性别、体质和年龄等属性用标签索引得到的满足条件物品列表item1, 对离线生成的items2进行如
您可以根据业务需要,选择合适的召回策略。召回策略用于配置离线计算逻辑,通过启动离线计算任务进行候选推荐结果集的生成。 各个召回策略的详细参数设置和输入输出请单击下方链接查看。 基于特定行为热度推荐 基于综合行为热度推荐 基于物品的协同过滤推荐 基于用户的协同过滤推荐 基于交替最小二乘的矩阵分解推荐
在“test-data”文件夹下,将behavior.txt中的每条数据的actionTime字段的值修改到当前时间附近。将item.txt中的每条数据的publishTime字段的值修改到当前时间附近,将item.txt中的每条数据的expireTime字段的值修改成大于当前时间的值,避免数据因为过期被过滤掉。
在“test-data”文件夹下,将behavior.txt中的每条数据的actionTime字段的值修改到当前时间附近。将item.txt中的每条数据的publishTime字段的值修改到当前时间附近,将item.txt中的每条数据的expireTime字段的值修改成大于当前时间的值,避免数据因为过期被过滤掉。
数值稳定常量:为保证数值稳定而设置的一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同的参数调整不同的学习率,对频繁变化的参数以更小的步长进行更新,而稀疏的参数以更大的步长进行更新。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 初
兴趣标签召回候选集:根据用户画像的兴趣标签召回候选集。 实时标签召回候选集:根据用户实时操作的物品的标签召回候选集。 默认兴趣标签召回候选集。 兴趣宽度 生成候选集中的兴趣宽度,值越小候选集中的类型越少。 说明: 选择兴趣宽度数量对应的,权重值最高的兴趣标签个数进行检索,得到与标签匹配的物品候选集。
UserCF算法生成的用户-物品列表候选集。 基于交替最小二乘的矩阵分解推荐 基于交替最小二乘的矩阵分解推荐:基于用户-物品的行为信息作为原始矩阵,利用ALS优化算法对原始矩阵进行矩阵分解,分解之后的用户隐向量矩阵和物品隐向量矩阵可以用来生成预估的新的用户-物品评分矩阵,提取出评分最高的若干个物品作为召回结果。