检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
LLaVA模型基于DevServer适配PyTorch NPU预训练指导(6.3.906) LLaVA是一种新颖的端到端训练的大型多模态模型,它结合了视觉编码器和Vicuna,用于通用的视觉和语言理解,实现了令人印象深刻的聊天能力,在科学问答(Science QA)上达到了新的高度
重置节点后无法正常使用? 问题现象 当ModelArts Lite的CCE集群在资源池上只有一个节点,且用户设置了volcano为默认调度器时,在ModelArts侧进行重置节点的操作后,节点无法正常使用,节点上的POD会调度失败。 原因分析 在ModelArts侧进行节点重置后,
使用WebSocket协议的方式访问在线服务 背景说明 WebSocket是一种网络传输协议,可在单个TCP连接上进行全双工通信,位于OSI模型的应用层。WebSocket协议在2011年由IETF标准化为RFC 6455,后由RFC 7936补充规范。Web IDL中的WebSocket
训练作业找不到GPU 问题现象 训练作业运行出现如下报错: failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected 原因分析 根据错误信息判断,报错原因为训练作业运行程序读取不到
GPT-2基于Server适配PyTorch GPU的训练推理指导 场景描述 本文将介绍在GP Ant8裸金属服务器中,使用DeepSpeed框架训练GPT-2(分别进行单机单卡和单机多卡训练)。 训练完成后给出自动式生成内容,和交互式对话框模式。 背景信息 Megatron-DeepSpeed
pipeline应用准备 当前迁移路径是从ONNX模型转换到MindIR模型,再用MindSpore Lite做推理, 所以迁移前需要用户先准备好自己的ONNX pipeline。下文以官方开源的图生图的Stable Diffusion v1.5的onnx pipeline代码为例进行说明
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 模型参数量 训练类型 序列长度cutoff_len 梯度累积值 优化工具(Deepspeed
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值
ModelArts Standard的WebSocket在线服务全流程开发 背景说明 WebSocket是一种网络传输协议,可在单个TCP连接上进行全双工通信,位于OSI模型的应用层。WebSocket协议在2011年由IETF标准化为RFC 6455,后由RFC 7936补充规范
使用Advisor工具分析生成调优建议 关于Advisor使用及安装过程请参见昇腾社区Gitee。最后生成导出的各类场景的建议包含以下两种: Terminal日志信息的概览建议。 包含Detail信息及修改示例的HTML信息。 按照建议信息做如下修改: 亲和优化器使能,在train.py
使用DCGM监控Lite Server资源 场景描述 本文主要介绍如何在Lite Server上配置DCGM监控,用于监控Lite Server上的GPU资源。 DCGM是用于管理和监控基于Linux系统的NVIDIA GPU大规模集群的一体化工具,提供多种能力,包括主动健康监控、
ECS获取和上传基础镜像 Step1 创建ECS 下文中介绍如何在ECS中构建一个训练镜像,请参考ECS文档购买一个Linux弹性云服务器。完成网络配置、高级配置等步骤,可根据默认选择,或进行自定义。创建完成后,单击“远程登录”,后续安装Docker等操作均在该ECS上进行。 注意
ECS获取和上传基础镜像 Step1 创建ECS 下文中介绍如何在ECS中构建一个训练镜像,请参考ECS文档购买一个Linux弹性云服务器。完成网络配置、高级配置等步骤,可根据默认选择,或进行自定义。创建完成后,单击“远程登录”,后续安装Docker等操作均在该ECS上进行。 注意
Open-Clip基于DevServer适配PyTorch NPU训练指导 Open-Clip广泛应用于AIGC和多模态视频编码器的训练。 方案概览 本方案介绍了在ModelArts的DevServer上使用昇腾NPU计算资源开展Open-clip训练的详细过程。完成本方案的部署,
报错“Connection permission denied (publickey)”如何解决 问题现象 VS Code连接开发环境时报错“Connection permission denied (publickey). Please make sure the key file
ECS获取和上传基础镜像 Step1 创建ECS 下文中介绍如何在ECS中构建一个训练镜像,请参考ECS文档购买一个Linux弹性云服务器。完成网络配置、高级配置等步骤,可根据默认选择,或进行自定义。创建完成后,单击“远程登录”,后续安装Docker等操作均在该ECS上进行。 注意
将Notebook的Conda环境迁移到SFS磁盘 本文介绍了如何将Notebook的Conda环境迁移到SFS磁盘上。这样重启Notebook实例后,Conda环境不会丢失。 步骤如下: 创建新的虚拟环境并保存到SFS目录 克隆原有的虚拟环境到SFS盘 重新启动镜像激活SFS盘中的虚拟环境
开启训练故障自动重启功能 创建训练作业时,可开启自动重启功能。当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图1 开启故障重启 断点续训练是通过checkpoint机制实现。checkpoint