检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
本地已安装2019.2-2023.2之间(包含2019.2和2023.2)版本的PyCharm专业版工具,推荐Windows版本,社区版或专业版均可,请单击PyCharm工具下载地址获取工具并在本地完成安装。 使用PyCharm ToolKit远程连接Notebook开发环境,仅限PyCharm专业版。
性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx.zip的llm_tools/llm_evaluation目录下。工具相关介绍在benchmark代码目录。 约束限制 当前版本仅支持语言+图片多模态性能测试。 静态benchmark验证 本章节介绍如何进行静态benchmark验证。
# 推理构建镜像启动脚本 ├──llm_tools # 推理工具包 ├──AutoSmoothQuant # W8A8量化工具 ├── ascend_autosmoothquant_adapter # 昇腾量化使用的算子模块
从0-1制作自定义镜像并创建AI应用 05 自动学习 ModelArts自动学习是帮助人们实现AI应用的低门槛、高灵活、零代码的定制化模型开发工具。 自动学习简介 自动学习功能介绍 项目分类 图像分类 物体检测 预测分析 声音分类 文本分类 操作指导 准备数据 创建项目 数据标注 自动训练
|──llm_inference # 推理代码包 |──llm_tools # 推理工具 代码上传至OBS 将llm_train文件上传至OBS中。 结合准备数据、准备权重、准备代码,将数据集、原始权重、代码文件都上传至OBS后,OBS桶的目录结构如下。
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
需指定op的值。可选值如下: OR:或操作 AND:与操作 表9 SearchLabel 参数 参数类型 描述 name String 标签名。 op String 多个属性之间的操作类型。可选值如下: OR:或操作 AND:与操作 property Map<String,Array<String>>
考在ECS上构建自定义镜像并在Notebook中使用 场景二:基于Notebook提供的预置镜像或第三方镜像,借助ModelArts命令行工具(ma-cli镜像构建命令介绍)制作和注册镜像,构建一个面向AI开发的自定义镜像。此场景Notebook作为制作镜像的平台。具体案例参考在
ue 将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考模型NPU卡数、梯度累积值取值表,如原使用Accelerator可替换为Deepspeed-ZeRO-1,Dee
情况。建议优化数据读取和数据增强的性能,例如将数据读取并行化,或者使用NVIDIA Data Loading Library(DALI)等工具提高数据增强的速度。 模型保存不要太频繁:模型保存操作一般会阻塞训练,如果模型较大,并且较频繁地进行保存,就会影响GPU/NPU利用率。同
|──llm_inference # 推理代码包 |──llm_tools # 推理工具 下载代码之后需要修改llm_train/AscendSpeed/scripts/install.sh文件。具体为删除install.sh的第43行
|──llm_inference # 推理代码包 |──llm_tools # 推理工具 代码上传至OBS 将llm_train文件上传至OBS中。 结合准备数据、准备权重、准备代码,将数据集、原始权重、代码文件都上传至OBS后,OBS桶的目录结构如下。
|──llm_inference # 推理代码包 |──llm_tools # 推理工具 代码上传至OBS 将llm_train文件上传至OBS中。 结合准备数据、准备权重、准备代码,将数据集、原始权重、代码文件都上传至OBS后,OBS桶的目录结构如下。
表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值 优化工具(Deepspeed) 规格与节点数 llama2 llama2 7B lora 4096/8192 gradient_accumulation_steps:
别的IOPS。obsutil是一款用于访问管理华为云对象存储服务(Object Storage Service,OBS)的命令行工具,您可以使用该工具对OBS进行常用的配置管理操作,如创建桶、上传文件/文件夹、下载文件/文件夹、删除文件/文件夹等。对于熟悉命令行程序的用户,obs
减小,并逐渐趋于稳定平缓。可以使用可视化工具TrainingLogParser查看loss收敛情况。 FAQ 问题:使用TrainingLogParser工具解析训练日志中loss数据,坐标栏空白,未显示数据走势曲线。 解决方法:在解析工具页面右侧,单击日志文件名右边的设置图标,在弹出的窗口中修改Loss
需指定op的值。可选值如下: OR:或操作 AND:与操作 表7 SearchLabel 参数 参数类型 描述 name String 标签名。 op String 多个属性之间的操作类型。可选值如下: OR:或操作 AND:与操作 property Map<String,Array<String>>
表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值 优化工具(Deepspeed) 规格与节点数 llama2 llama2 7B lora 4096/8192 gradient_accumulation_steps: