检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
eval_datasets:评测数据集和评测方法,比如ceval_gen、mmlu_gen,不同数据集可以详见opencompass下面data目录。 model_name:评测模型名称,不需要与启动服务时的模型参数保持一致。
eval_datasets:评测数据集和评测方法,比如ceval_gen、mmlu_gen,不同数据集可以详见opencompass下面data目录。 model_name:评测模型名称,不需要与启动服务时的模型参数保持一致。
主流开源大模型基于Lite Server适配Ascend-vLLM PyTorch NPU推理指导(6.3.912) Ascend-vLLM介绍 支持的模型列表 版本说明和要求 推理服务部署 推理关键特性使用 推理服务精度评测 推理服务性能评测 附录 父主题: LLM大语言模型训练推理
MA-Advisor性能调优建议工具使用指导 MA-Advisor是一款迁移性能问题自动诊断工具,其集成了昇腾自动诊断工具msprof-analyze,并在ModelArts Standard的Jupyter lab平台进行了插件化,能快速分析和诊断昇腾场景下PyTorch性能劣化问题并给出相关调优建议
eval_datasets:评测数据集和评测方法,比如ceval_gen、mmlu_gen,不同数据集可以详见opencompass下面data目录。 model_name:评测模型名称,不需要与启动服务时的模型参数保持一致。
eval_datasets:评测数据集和评测方法,比如ceval_gen、mmlu_gen,不同数据集可以详见opencompass下面data目录。 model_name:评测模型名称,不需要与启动服务时的模型参数保持一致。
可能原因 配置MobaXterm工具时,没有勾选“SSH keepalive”或专业版MobaXterm工具的“Stop server after”时间设置太短。 解决方案 打开MobaXterm,单击菜单栏“Settings”,如图1 打开“Settings”所示。
在JupyterLab中使用TensorBoard可视化作业 ModelArts支持在开发环境中开启TensorBoard可视化工具。TensorBoard是TensorFlow的可视化工具包,提供机器学习实验所需的可视化功能和工具。
/"当前所在路径 --baseline <baseline>:<可选>GP-Ant8机器精度基线Yaml文件路径,不填则使用工具自带基线配置,默认基线配置样例如下: 客户使用工具自带精度基线Yaml则需使用accuracy_cfgs.yaml文件中默认配置,权重使用表1 模型权重中指定的
/"当前所在路径 --baseline <baseline>:<可选>GP-Ant8机器精度基线Yaml文件路径,不填则使用工具自带基线配置,默认基线配置样例如下: 客户使用工具自带精度基线Yaml则需使用accuracy_cfgs.yaml文件中默认配置,权重使用表1 模型权重中指定的
精度评测和性能评测。具体请参考推理服务精度评测和推理服务性能评测。 父主题: 推理关键特性使用
查看性能结果 任务完成之后会在test-benchmark目录下生成excel表格: 性能结果LLaMAFactory_train_performance_benchmark_<版本号>_<时间戳>.xlsx 表格样例如下: 父主题: 训练benchmark工具
查看性能结果 任务完成之后会在test-benchmark目录下生成excel表格: 性能结果 LLaMAFactory_train_performance_benchmark_<版本号>_<时间戳>.xlsx 表格样例如下: 父主题: 训练benchmark工具
查看性能结果 任务完成之后会在test-benchmark目录下生成excel表格: 性能结果LLaMAFactory_train_performance_benchmark_<版本号>_<时间戳>.xlsx 表格样例如下: 父主题: 训练benchmark工具
── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt # 第三方依赖 目前性能测试还不支持投机推理能力。
── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态,动态性能评测脚本、 ├── requirements.txt # 第三方依赖 静态benchmark验证 本章节介绍如何进行静态benchmark
── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt # 第三方依赖 目前性能测试还不支持投机推理能力。
精度评测和性能评测。具体请参考推理服务精度评测和推理服务性能评测。 父主题: 投机推理
── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态,动态性能评测脚本 执行性能测试脚本前,需先安装相关依赖。
包含了本教程中使用到的模型训练代码、推理部署代码和推理评测代码。代码包具体说明请参见模型软件包结构说明。 获取路径:Support-E,在此路径中查找下载ModelArts 6.3.911 版本。