检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。
也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。
也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。
SDXL基于DevServer适配PyTorch NPU的LoRA训练指导(6.3.905) SD1.5基于DevServer适配PyTorch NPU Finetune训练指导(6.3.904) Open-Clip基于DevServer适配PyTorch NPU训练指导 AIGC工具
也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。
优点:支持深度自定义环境安装,可以方便的替换驱动、固件和上层开发包,具有root权限,结合配置指导、初始化工具及容器镜像可以快速搭建昇腾开发环境。 缺点:资源申请周期长,购买成本高,管理视角下资源使用效率较低。
用户自己业务占用了开发环境官方的8888、8889端口的,需要用户修改自己的进程端口号; 用户的镜像指定了PYTHONPATH、sys.path导致服务启动调用冲突的,需在实例启动后,再指定PYTHONPATH、sys.path; 用户使用了已开启sudo权限的专属池,使用自定义镜像时,sudo工具未安装或安装错误
loss收敛图存放路径对应表1表格中output_dir参数值路径下的training_loss.png中也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。
loss收敛图存放路径对应表1表格中output_dir参数值路径下的training_loss.png中也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。
不限时长:不限制作业的运行时长,AI Gallery工具链服务部署完成后将一直处于“运行中”。 指定时长:设置作业运行几小时后停止,当AI Gallery工具链服务运行时长达到指定时长时,系统将会暂停作业。时长设置不能超过计算资源的剩余额度。
Atlas 800训练服务器HCCN Tool Atlas 800 训练服务器 1.0.11 HCCN Tool接口参考主要介绍集群网络工具hccn_tool对外接口说明,包括配置RoCE网卡的IP、网关,配置网络检测对象IP和查询LLDP信息等。
当开发者对希望对模型进行开发和训练,AI Gallery为零基础开发者,提供无代码开发工具,快速推理、部署模型;为具备基础代码能力的开发者,AI Gallery将复杂的模型、数据及算法策略深度融合,构建了一个高效协同的模型体验环境,让开发者仅需几行代码即可调用任何模型,大幅度降低了模型开发门槛
提供12+标注工具,方便用户进行精细化、场景化和专业化的数据标注。 提供基于样本和标注结果进行特征分析,帮助用户整体了解数据的质量。 提升用户数据准备的效率。 提供数据版本管理能力,帮助用户提升数据管理的效率。
以下是一些Function Calling的使用场景: 表1 Function Calling使用场景说明 使用场景 说明 增强能力 大模型通过Function Calling可以调用外部工具或服务,例如实时数据检索、文件处理、数据库查询等,从而扩展其能力。
可选值如下: npuDriver:NPU驱动 gpuDriver:GPU驱动 ccePlugin:CCE插件 helm:Helm模板 icAgent:ICAgent工具 description String 插件模板描述。
由于构造和运行机制的差别,整个迁移过程并非是完全平替,GPU在灵活性上有其独特的优势,而NPU上的执行目前还是依赖于算子的下发,对于NPU构造的理解是昇腾训练迁移中必备的知识,只有对于昇腾有基础理解,配合一些诊断工具,面对复杂问题时,才能进行进一步诊断与定位,进而发挥NPU的能力。
Settings JupyterLab工具系统设置。 Help JupyterLab工具自带的帮助参考。 图15 ipynb文件菜单栏中的快捷键 表4 ipynb文件菜单栏中的快捷键 快捷键 说明 保存文件。 添加新代码块。 剪切选中的代码块。 复制选中的代码块。
model_metric_list String 训练作业的模型评测参数。具体请参见表5。 system_metric_list Object 训练作业的系统监控指标。具体请参见表6。 user_image_url String 自定义镜像训练作业的自定义镜像的SWR-URL。
* 执行命令pip --version,确认Python通用包管理工具pip已经存在。
替换深度学习训练加速的工具或增加zero等级,可参考各个模型深度学习训练加速框架的选择,如原使用Accelerator可替换为Deepspeed-ZeRO-1,Deepspeed-ZeRO-1替换为Deepspeed-ZeRO-2以此类推,重新训练如未解决则执行下一步。