检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
模型支持部署的服务类型。 版本数量 模型的版本数量。 请求模式 在线服务的请求模式。 同步请求:单次推理,可同步返回结果(约<60s)。例如: 图片、较小视频文件。 异步请求:单次推理,需要异步处理返回结果(约>60s)。例如: 实时视频推理、大视频文件。 创建时间 模型的创建时间。 描述
计时长2分钟左右。 在线服务部署完成后,您可以单击操作列的预测,进入服务详情页的“预测”页面。 在“预测”页签,单击“上传”,上传一个测试图片,单击“预测”进行预测。此处提供一个预测样例图供使用。 步骤6:清除资源 为避免产生不必要的费用,通过此示例学习订阅算法的使用后,建议您清除相关资源,避免造成资源浪费。
行工具,使用方式和docker命令基本一致,可用于后续镜像构建步骤中。 # 下载 nerdctl 工具,注意使用的是1.7.6 arm64版本 wget https://github.com/containerd/nerdctl/releases/download/v1.7.6/nerdctl-1
yter Notebook的下一代产品,可以使用它编写Notebook、操作终端、编辑Markdown文本、打开交互模式、查看csv文件及图片等功能。 父主题: Standard功能介绍
导入的OBS路径或manifest路径。 导入manifest时,path必须精确到具体manifest文件。 导入为目录时,目前仅支持数据集类型为图片分类、物体检测、文本分类、声音分类。 import_type Integer 导入方式。可选值如下: 0:目录导入 1:按manifest文件导入
管理模型文件 预览文件 在模型详情页,选择“模型文件”页签。单击文件名称即可在线预览文件内容。 仅支持预览大小不超过10MB、格式为文本类或图片类的文件。 下载文件 在模型详情页,选择“模型文件”页签。单击操作列的“下载”,即可下载文件到本地。 删除文件 在模型详情页,选择“模型文
导入的OBS路径或manifest路径。 导入manifest时,path必须精确到具体manifest文件。 导入为目录时,目前仅支持数据集类型为图片分类、物体检测、文本分类、声音分类。 import_type Integer 导入方式。可选值如下: 0:目录导入 1:按manifest文件导入
准备数据集 进入AI Gallery,搜索8类常见生活垃圾图片数据集。 单击“下载”,选择云服务区域“华北-北京四”,单击“确定”进入下载详情页。 填写如下参数: 下载方式:ModelArts数据集。 目标区域:华北-北京四。 数据类型:图片。 数据集输出位置:用来存放输出的数据标注的相关
ascend_cloud_ops_atb-xx.whl Step4 开始推理 在容器工作目录下进到Qwen-VL/infer_test,将要测试的图片放到Qwen-VL/infer_test/images文件夹中,执行如下命令,运行推理脚本。 bash infer_demo.sh 推理结果如下所示:
性能数据根目录下的子目录,仅支持最多两个子目录,用空格隔开;若传入两个子目录,则每个子图会画出两条线;若只有一个子目录,则只有一条线 执行脚本即可获得指定性能数据可视化图片,如下所示: 父主题: 分离部署
导入的OBS路径或manifest路径。 导入manifest时,path必须精确到具体manifest文件。 导入为目录时,目前仅支持数据集类型为图片分类、物体检测、文本分类、声音分类。 import_samples 否 Boolean 是否导入样本。可选值如下: true:导入样本(默认值)
2409-aarch64-snt9b-20241213131522-aafe527 SWR上拉取。 约束限制 本文档适配昇腾云ModelArts 6.5.901版本,请参考表2获取配套版本的软件包和镜像,请严格遵照版本配套关系使用本文档。 确保容器可以访问公网。 步骤一:检查环境 请参考Lite Server资源开通,购买Lite
用于后续的训练或推理任务 plot_loss true 用于指定是否绘制损失曲线。如果设置为"true",则在训练结束后,将损失曲线保存为图片 overwrite_output_dir true 是否覆盖输出目录。如果设置为"true",则在每次训练开始时,都会清空输出目录,以便保存新的训练结果。
${base_image}为基础镜像地址。 ${image_name}为推理镜像名称,可自行指定。 运行完后,会生成推理所需镜像。 多模态场景下,如果推理需要使用NPU加速图片预处理(仅适配了llava-1.5模型),启动时需要设置export ENABLE_USE_DVPP=1,需要安装torchvision_npu,可放到镜像制作脚本
${base_image}为基础镜像地址。 ${image_name}为推理镜像名称,可自行指定。 运行完后,会生成推理所需镜像。 多模态场景下,如果推理需要使用NPU加速图片预处理(仅适配了llava-1.5模型),启动时需要设置export ENABLE_USE_DVPP=1,需要安装torchvision_npu,可放到镜像制作脚本
当前自动学习支持快速创建图像分类、物体检测、预测分析、声音分类和文本分类模型的定制化开发。可广泛应用在工业、零售安防等领域。 图像分类:识别图片中物体的类别。 物体检测:识别出图片中每个物体的位置和类别。 预测分析:对结构化数据做出分类或数值预测。 声音分类:对环境中不同声音进行分类识别。 文本分类:识别一段文本的类别。
Token(平均每个token的生成时间) = (finished_time - first_token_time) / output_len) 图片源自于:Throughput is Not All You Need: Maximizing Goodput in LLM Serving
使用场景 如高性能计算、媒体处理、文件共享和内容管理和Web服务等。 说明: 高性能计算:主要是高带宽的需求,用于共享文件存储,比如基因测序、图片渲染这些。 如大数据分析、静态网站托管、在线视频点播、基因测序和智能视频监控等。 如高性能计算、企业核心集群应用、企业应用系统和开发测试等。
data_sources 是 Array of DataSource objects 数据集输入位置,用于将此目录及子目录下的源数据(如图片/文件/音频等)同步到数据集。对于表格数据集,该参数为导入目录。表格数据集的工作目录不支持为KMS加密桶下的OBS路径。目前仅支持传入单个DataSource。
2)版本的PyCharm专业版工具,推荐Windows版本,社区版或专业版均可,请单击PyCharm工具下载地址获取工具并在本地完成安装。 使用PyCharm ToolKit远程连接Notebook开发环境,仅限PyCharm专业版。 使用PyCharm ToolKit提交训练作业,社区版和专业版都支持。