内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 什么是深度学习

    尤为重要的是,深度学习可以自动地学习如何最优地将不同的特征置于哪一层。也就是说,相比于传统机器学习算法需要提供人工定义的特征,深度学习可以自己学习如何提取特征。因此,相比于传统的机器学习算法,深度学习并不依赖复杂且耗时的手动特征工程。

    作者: 角动量
    1546
    5
  • 深度学习概念

    深度学习概念 深度学习(Deep Learning, DL)由Hinton等人于2006年提出,是机器学习(MachineLearning, ML)的一个新领域。 

    作者: QGS
    973
    3
  • 浅谈深度学习

    深度学习就是在数据的驱动下,从一个X-形式变到另一个X-形式。为什么深度学习能很有效?为什么深度学习很有效?

    作者: 运气男孩
    1268
    3
  • 浅谈深度学习

    深度学习定义深度学习定义:一般是指通过训练多层网络结构对未知数据进行分类或回归深度学习分类:有监督学习方法——深度前馈网络、卷积神经网络、循环神经网络等;无监督学习方法——深度信念网、深度玻尔兹曼机,深度自编码器等。

    作者: QGS
    38
    2
  • 认识深度学习

    什么是深度学习 要理解什么是深度学习,人们首先需要理解它是更广泛的人工智能领域的一部分。简而言之,人工智能涉及教计算机思考人类的思维方式,其中包括各种不同的应用,例如计算机视觉、自然语言处理和机器学习。 

    作者: 建赟
    1845
    2
  • 什么是深度学习

    深度学习是支撑人工智能发展的核心技术,云服务则是深度学习的主要业务模式之一。OMAI深度学习平台(以下简称OMAI平台)即是在上述前提下诞生的平台软件。OMAI深度学习平台是具备深度学习算法开发、模型训练、推理服务等能力的一站式平台软件。

    作者: OMAI
    6641
    0
  • 深度学习学习

    若 ϵ0 太大,学习曲线将会剧烈振荡,代价函数值通常会明显增加。温和的振荡是良好的,容易在训练随机代价函数(例如使用 Dropout 的代价函数)时出现。如果学习率太小,那么学习过程会很缓慢。如果初始学习率太低,那么学习可能会卡在一个相当高的代价值。

    作者: 小强鼓掌
    454
    2
  • 深度学习学习算法

            机器学习算法是一种可以从数据中学习的算法。然而,我们所谓的 “学习”是什么意思呢?

    作者: 小强鼓掌
    944
    0
  • 【mindSpore】【深度学习】求指路站内的深度学习教程

    老师给了我们个任务,用mindSpore完成一个深度学习,求大佬指路,站内有什么方便的教程。要求不能是花卉识别、手写体数字识别、猫狗识别,因为这些按教程已经做过了(然而我还是不会mindSpore)。尽量简单,我们只要是个深度学习就能完成任务。

    作者: abcd咸鱼
    1443
    1
  • 深度学习学习算法

    机器学习算法是一种可以从数据中学习的算法。然而,我们所谓的 ‘‘学习’’ 是什么意思呢?

    作者: 小强鼓掌
    736
    1
  • 深度学习释义

    深度学习是机器学习的一种,而机器学习是实现人工智能的必经路径。深度学习的概念源于人工神经网络的研究,含多个隐藏层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。

    作者: 某地瓜
    1961
    1
  • 深度学习导论

    一、深度学习的起源深度学习的发展历程可以追溯到1943年,当时心理学家麦卡洛克和数学逻辑学家皮茨发表论文《神经活动中内在思想的逻辑演算》,提出了MP模型,这标志着神经网络的开端。在随后的几十年中,深度学习经历了多次起伏。

    作者: 林欣
    41
    1
  • 深度学习之Bagging学习

    然后,我们运行和之前一样的前向传播、反向传播以及学习更新。说明了在Dropout下的前向传播。

    作者: 小强鼓掌
    1253
    2
  • 深度学习学习 XOR

    XOR 函数提供了我们想要学习的目标函数 y = f∗(x)。我们的模型给出了一个函数 y = f(x; θ)并且我们的学习算法会不断调整参数 θ 来使得 f 尽可能接近 f∗。       在这个简单的例子中,我们不会关心统计泛化。

    作者: 小强鼓掌
    947
    3
  • 深度学习之无监督学习算法

    表示的概念是深度学习核心主题之一,因此也是本书的核心主题之一。本节会介绍表示学习算法中的一些简单实例。总的来说,这些实例算法会说明如何实施上面的三个标准。剩余的大部分章节会介绍其他表示学习算法以不同方式处理这三个标准或是介绍其他标准。

    作者: 小强鼓掌
    950
    1
  • 适合新手的深度学习综述(4)--深度学习方法

    深度神经网络在监督学习中取得了巨大的成功。此外,深度学习模型在无监督、混合和强化学习方面也非常成功。4.1 深度监督学习监督学习应用在当数据标记、分类器分类或数值预测的情况。LeCun 等人 (2015) 对监督学习方法以及深层结构的形成给出了一个精简的解释。

    作者: @Wu
    176
    1
  • 深度学习之机器学习基础

    深度学习是机器学习的一个特定分支。要想学好深度学习,必须对机器学习的基本原理有深刻的理解。本章将探讨贯穿本书其余部分的一些机器学习重要原理。

    作者: 小强鼓掌
    839
    2
  • 深度学习GRU

    Gated Recurrent Unit – GRU 是 LSTM 的一个变体。他保留了 LSTM 划重点,遗忘不重要信息的特点,在long-term 传播的时候也不会被丢失。

    作者: 我的老天鹅
    1262
    13
  • 机器学习深度学习区别

    深度学习由经典机器学习发展而来,两者有着相同与不同特点1.完全不同的模式机器学习:使计算机能从数据中学习,并利用其学到的知识来提供答案(通常为预测)。依赖于不同的范式(paradigms),例如统计分析、寻找数据相似性、使用逻辑等深度学习:使用单一技术,最小化人脑劳动。

    作者: 极客潇
    1358
    4
  • 分享深度学习笔记组件学习

    组件学习组件学习不仅使用一个模型的知识,还使用多个模型的知识。人们相信,通过独特的信息组合或输入(包括静态和动态),深度学习可以比单一模式更深入地理解和表现。迁移学习是组件学习的一个非常明显的例子。基于这一思想,对类似问题预先训练的模型权重可用于对特定问题进行微调。

    作者: 初学者7000
    628
    1