检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。
深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。
StreamingML 异常检测 时间序列预测 实时聚类 深度学习模型预测 父主题: Flink SQL语法参考(不再演进,推荐使用Flink OpenSource SQL)
StreamingML 异常检测 时间序列预测 实时聚类 深度学习模型预测 父主题: Flink SQL语法参考(不再演进,推荐使用Flink OpenSource SQL)
产品内核及架构深度优化,综合性能是传统MapReduce模型的百倍以上,SLA保障99.95%可用性。
通常分为稀疏存储结构和密集存储结构两种。hll创建时是稀疏存储结构,当需要更高效处理时会转为密集型数据结构。P4HyperLogLog则在其整改生命周期都是密集型数据结构。如有必要,可以显式地转换cast(hll as P4HyperLogLog)。
适用于大数据分析、原生云应用程序数据、静态网站托管、备份/活跃归档、深度/冷归档等场景。 对象存储服务(Object Storage Service,简称OBS)是一个基于对象的海量存储服务,为客户提供海量、安全、高可靠、低成本的数据存储能力。
适用于大数据分析、原生云应用程序数据、静态网站托管、备份/活跃归档、深度/冷归档等场景。 对象存储服务(Object Storage Service,简称OBS)是一个基于对象的海量存储服务,为客户提供海量、安全、高可靠、低成本的数据存储能力。
适用于大数据分析、原生云应用程序数据、静态网站托管、备份/活跃归档、深度/冷归档等场景。 对象存储服务(Object Storage Service,简称OBS)是一个基于对象的海量存储服务,为客户提供海量、安全、高可靠、低成本的数据存储能力。
适用于大数据分析、原生云应用程序数据、静态网站托管、备份/活跃归档、深度/冷归档等场景。 对象存储服务(Object Storage Service,简称OBS)是一个基于对象的海量存储服务,为客户提供海量、安全、高可靠、低成本的数据存储能力。
适用于数据转储、大数据分析、备份或活跃归档、深度或冷归档等场景。 对象存储服务(Object Storage Service,简称OBS)是一个基于对象的海量存储服务,为客户提供海量、安全、高可靠、低成本的数据存储能力。
适用于数据转储、大数据分析、备份或活跃归档、深度或冷归档等场景。 对象存储服务(Object Storage Service,简称OBS)是一个基于对象的海量存储服务,为客户提供海量、安全、高可靠、低成本的数据存储能力。
适用于数据转储、大数据分析、备份或活跃归档、深度或冷归档等场景。
适用于数据转储、大数据分析、备份或活跃归档、深度或冷归档等场景。 考虑到输入流可以是无界的,每个桶中的数据被组织成有限大小的Part文件。完全可以配置为基于时间的方式往桶中写入数据,比如可以设置每个小时的数据写入一个新桶中。即桶中将包含一个小时间隔内接收到的记录。
适用于数据转储、大数据分析、备份或活跃归档、深度或冷归档等场景。 考虑到输入流可以是无界的,每个桶中的数据被组织成有限大小的Part文件。完全可以配置为基于时间的方式往桶中写入数据,比如可以设置每个小时的数据写入一个新桶中。即桶中将包含一个小时间隔内接收到的记录。
适用于数据转储、大数据分析、备份或活跃归档、深度或冷归档等场景。
适用于数据转储、大数据分析、备份或活跃归档、深度或冷归档等场景。 考虑到输入流可以是无界的,每个桶中的数据被组织成有限大小的Part文件。完全可以配置为基于时间的方式往桶中写入数据,比如可以设置每个小时的数据写入一个新桶中。即桶中将包含一个小时间隔内接收到的记录。
例如,在自定义镜像中加入机器学习相关的Python包或者C库,可以通过这种方式帮助用户实现功能扩展。 用户使用自定义镜像功能需要具备Docker相关的基础知识。 使用限制 创建自定义镜像必须使用DLI提供的基础镜像。 不能随意修改基础镜像中DLI相关组件及目录。
使用DLI提交Spark Jar作业 操作场景 DLI允许用户提交编译为Jar包的Spark作业,Jar包中包含了Jar作业执行所需的代码和依赖信息,用于在数据查询、数据分析、机器学习等特定的数据处理任务中使用。
对于JVM语言系的程序,通常会把程序打成Jar包并依赖其他一些第三方的Jar,同样的Python程序也有依赖一些第三方库,尤其是基于PySpark的融合机器学习相关的大数据分析程序。